Yingqi Liu, Qinglun Li, Jie Tan, Yifan Shi, Li Shen, Xiaochun Cao, Understanding the Stability-based Generalization of Personalized Federated Learning, ICLR, 2025.
Jinluan Yang, Anke Tang, Didi Zhu, Zhengyu Chen, Li Shen, Fei Wu, Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace, ICLR, 2025.
Puning Zhao, Jiafei Wu, Zhe Liu, Li Shen, Zhikun Zhang, Rongfei Fan, Le Sun, Qingming Li, Enhancing Learning with Label Differential Privacy by Vector Approximation, ICLR, 2025. (spotlight)
Liang Chen, Li Shen, Yang Deng, Xiaoyan Zhao, Bin Liang, Kam-Fai Wong, PEARL: Towards Permutation-Resilient LLMs, ICLR, 2025.
Ziqing Fan, Siyuan Du, Shengchao Hu, Pingjie Wang, Li Shen, Ya Zhang, Dacheng Tao, Yanfeng Wang, Combatting Dimensional Collapse in LLM Pre-Training Data via Submodular File Selection, ICLR, 2025. (oral)
Qixin Zhang, Zongqi Wan, Yu Yang, Li Shen, Dacheng Tao, Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency, ICLR, 2025. (spotlight)
Siyu Luan, Zhenyi Wang, Li Shen, Zonghua Gu, Chao Wu, Dacheng Tao, Dynamic Neural Fortresses: An Adaptive Shield for Model Extraction Defense, ICLR, 2025.
Yongxian Wei, Zixuan Hu, Li Shen, Zhenyi Wang, Chun Yuan, Dacheng Tao, Open-Vocabulary Customization from CLIP via Data-Free Knowledge Distillation, ICLR, 2025. (oral)
Yan Sun, Li Shen, Dacheng Tao, A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Need, NeurIPS, 2024. (spotlight)
Rui Min, Zeyu Qin, Nevin L. Zhang, Li Shen, Minhao Cheng, Uncovering, Explaining, and Mitigating the Superficial Safety of Backdoor Defense, NeurIPS, 2024. (spotlight)
Hongling Zheng, Li Shen, Yong Luo, Tongliang Liu, Jialie Shen, Dacheng Tao, Multi-Task Prompt Decision Transformer for Efficient Unseen Task Generalization, NeurIPS, 2024.
Yang Dai, Oubo Ma, Longfei Zhang, Xingxing Liang, Shengchao Hu, Mengzhu Wang, Shouling Ji, Jincai Huang, Li Shen, Is Mamba Compatible with Trajectory Optimization in Offline Reinforcement Learning?, NeurIPS, 2024.
Puning Zhao, Lifeng Lai, Li Shen, Qingming Li, Jiafei Wu, Zhe Liu, A Huber Loss Minimization Approach to Mean Estimation under User-level Differential Privacy, NeurIPS, 2024.
Peng Wang, Li Shen, Zerui Tao, Shuaida He, Dacheng Tao, Generalization Analysis of Stochastic Weight Averaging with General Sampling, ICML, 2024.
Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, Dacheng Tao, Merging Multi-Task Models via Weight-Ensembling Mixture of Experts, ICML, 2024.
Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo, Xiaojun Chen, Xingwei Wang, Dacheng Tao, Representation Surgery for Multi-Task Model Merging, ICML, 2024.
Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, Dacheng Tao, Q-learning Transformer for Offline Reinforcement Learning, ICML, 2024.
Shengchao Hu, Ziqing Fan, Li Shen, Ya Zhang, Yanfeng Wang, Dacheng Tao, HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning, ICML, 2024.
Zixuan Hu, Yongxian Wei, Li Shen, Zhenyi Wang, Lei Li, Chun Yuan, Dacheng Tao, Sparse Model Inversion: Efficient Inversion of Vision Transformers with Less Hallucination, ICML, 2024.
Yongxian Wei, Zixuan Hu, Li Shen, Zhenyi Wang, Yu Li, Chun Yuan, Dacheng Tao, Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models, ICML, 2024.
Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, Dacheng Tao, AdaMerging: Adaptive Model Merging for Multi-Task Learning, ICLR, 2024.
Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, Dacheng Tao, Parameter-Efficient Multi-Task Model Fusion with Partial Linearization, ICLR, 2024.
Shengchao Hu, Li Shen, Ya Zhang, Dacheng Tao, Learning Multi-Agent Communication from Graph Modeling Perspective, ICLR, 2024.
Guozheng Ma, Lu Li, Sen Zhang, Zixuan Liu, Zhen Wang, Yixin Chen, Li Shen, Xueqian Wang, Dacheng Tao, Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and Training Stages, ICLR, 2024.
Zhenyi Wang, Yan Li, Li Shen, Heng Huang, A Unified and General Framework for Continual Learning, ICLR, 2024.
Ziming Hong, Zhenyi Wang, Li Shen, Yu Yao, Zhuo Huang, Shiming Chen, Chuanwu Yang, Mingming Gong, Tongliang Liu, Improving Non-Transferable Representation Learning by Harnessing Content and Style, ICLR, 2024. (spotlight)
Nan Yin, Mengzhu Wang, Zhenghan Chen, Li Shen, Huan Xiong, Bin Gu, Xiao Luo, DREAM: Dual Structured Exploration with Mixup for Open-set Graph Domain Adaption, ICLR, 2024.
Yan Sun, Li Shen, Dacheng Tao, Understanding How Consistency Works in Federated Learning via Stage-wise Relaxed Initialization, NeurIPS, 2023.
Miaoxi Zhu, Li Shen, Bo Du, Dacheng Tao, Stability and Generalization of the Decentralized Stochastic Gradient Descent Ascent Algorithm, NeurIPS, 2023.
Zhenyi Wang, Li Shen, Tongliang Liu, Tiehang Duan, Yanjun Zhu, Donglin Zhan, David Doermann, Mingchen Gao, Defending against Data-Free Model Extraction by Distributionally Robust Defensive Training, NeurIPS, 2023.
Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, Guibing Guo, An Efficient Dataset Condensation Plugin and Its Application to Continual Learning, NeurIPS, 2023.
Zhuo Huang, Li Shen, Jun Yu, Bo Han, Tongliang Liu, FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness for Semi-Supervised Learning, NeurIPS, 2023.
Xuming An, Li Shen, Han Hu, Yong Luo, Federated Learning with Manifold Regularization and Normalized Update Reaggregation, NeurIPS, 2023.
Rui Min, Zeyu Qin, Li Shen, Minhao Cheng, Stable Backdoor Purification with Feature Shift Tuning, NeurIPS, 2023.
Guozheng Ma, Linrui Zhang, Haoyu Wang, Lu Li, Zilin Wang, Zhen Wang, Li Shen, Xueqian Wang, Dacheng Tao, Learning Better with Less: Effective Augmentation for Sample-Efficient Visual Reinforcement Learning, NeurIPS, 2023.
Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang Wang, Vlado Menkovski, Xiaolong Ma, Mykola Pechenizkiy, Shiwei Liu, Dynamic Sparsity Is Channel-Level Sparsity Learner, NeurIPS, 2023.
Yan Sun, Li Shen, Shixiang Chen, Liang Ding, Dacheng Tao, Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape, ICML, 2023. (oral)
Zixuan Hu, Li Shen, Zhenyi Wang, Baoyuan Wu, Chun Yuan, Dacheng Tao, Learning to Learn from APIs: Black-box Data-free Meta-Learning, ICML, 2023.
Yifan Shi, Li Shen, Kang Wei, Yan Sun, Bo Yuan, Xueqian Wang, Dacheng Tao, Improving the Model Consistency of Decentralized Federated Learning, ICML, 2023.
Nan Yin, Li Shen, Mengzhu Wang, Long Lan, Zeyu Ma, Chong Chen, Xian-Sheng Hua, Xiao Luo, CoCo: A Coupled Contrastive Framework for Unsupervised Domain Adaptive Graph Classification, ICML, 2023.
Tianjin Huang, Lu Yin, Zhenyu Zhang, Li Shen, Meng Fang, Mykola Pechenizkiy, Zhangyang Wang, Shiwei Liu, Are Large Kernels Better Teachers than Transformers for ConvNets?, ICML, 2023.
Yan Sun, Li Shen, Tiansheng Huang, Liang Ding, Dacheng Tao, FedSpeed: Larger Local Interval, Less Communication Round, and Higher Generalization Accuracy, ICLR, 2023.
Runzhong Wang, Li Shen, Yiting Chen, Xiaokang Yang, Dacheng Tao, Junchi Yan, Relaxed Combinatorial Optimization Networks with Self-Supervision: Theoretical and Empirical Notes on the Cardinality-Constrained Case, ICLR, 2023.
Zhuo Huang, Xiaobo Xia, Li Shen, Bo Han, Mingming Gong, Chen Gong, Tongliang Liu, Harnessing Out-Of-Distribution Examples via Augmenting Content and Style, ICLR, 2023.
Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, Dacheng Tao, Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation Approach, NeurIPS, 2022.
Erdun Gao, Ignavier Ng, Mingming Gong, Li Shen, Wei Huang, Tongliang Liu, Kun Zhang, Howard Bondell, MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models, NeurIPS, 2022.
Zeyu Qin, Yanbo Fan, Yi Liu, Li Shen, Yong Zhang, Jue Wang, Baoyuan Wu, Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation, NeurIPS, 2022.
Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Tiehang Duan, Mingchen Gao, Improving Task-free Continual Learning by Distributionally Robust Memory Evolution, ICML, 2022.
Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, Dacheng Tao, DisPFL: Towards Communication-Efficient Personalized Federated learning via Decentralized Sparse Training, ICML, 2022. [code]
Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, Junchi Yan, Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning, ICML, 2022.
Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, Tongliang liu, Understanding Robust Overfitting of Adversarial Training and Beyond, ICML, 2022.
Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training, ICLR, 2022.
Shaopeng Fu, Fengxiang He, Yang Liu, Li Shen, Dacheng Tao, Robust Unlearnable Examples: Protecting Data Privacy Against Adversarial Learning, ICLR, 2022.
Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu, Sparse Training via Boosting Pruning Plasticity with Neuroregeneration, NeurIPS, 2021.
Zhishuai Guo, Mingrui Liu, Zhuoning Yuan, Li Shen, Wei Liu, Tianbao Yang, Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks, ICML, 2020.
Li Shen, Peng Sun, Yitong Wang, Wei Liu, Tong Zhang, An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method, ICML, 2018.
Li Shen, Wei Liu, Ganzhao Yuan, Shiqian Ma, GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization, ICML, 2017.[extended version]