Conteúdos do 6º ano

Os assuntos estão ali em baixo.
Exibindo 1 Item
Sistema de Numeração DecimalOs números NaturaisOperações com números NaturaisMúltiplos e DivisoresOs números DecimalPorcentagem
Classificar 
 
Classificar 
 
Classificar 
 
Classificar 
 
Classificar 
 
Classificar 
 
Sistema de Numeração DecimalOs números NaturaisOperações com números NaturaisMúltiplos e DivisoresOs números DecimalPorcentagem
A convivência em sociedade provocou na humanidade, a necessidade da criação de um mecanismo capaz de gerenciar numerais. Para expressarmos quantidades ou para enumerarmos objetos, por exemplo, utilizamos um sistema de numeração. Existem vários sistemas de numeração, mas o mais comum e que é frequentemente utilizado por nós, é o sistema de numeração decimal. Neste sistema os números são representados por um agrupamento de símbolos que chamamos de algarismos ou dígitos. O sistema de numeração decimal possui ao todo dez símbolos distintos, através dos quais se utilizarmos apenas um dígito, podemos representar quantidades de zero a nove. Dígitos ou algarismos são símbolos numéricos utilizados na representação de um número, por exemplo, o número 756 é composto de três dígitos: 7, 5 e 6. No sistema decimal contamos com dez símbolos distintos: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9. Números no Sistema Decimal 0 - zero: 1 - um: 2 - dois: 3 - três: 4 - quatro: 5 - cinco: 6 - seis: 7 - sete: 8 - oito: 9 - nove: Acima vemos dez números no sistema decimal com apenas um Dígito. Observe que o 0 ( zero ) é utilizado neste caso para representarmos a ausência de bolinhas. O 1 representa uma bolinha, o 2 representa duas bolinhas e assim por diante, sempre considerando uma bolinha a mais, até chegarmos ao número 9 que representa um total de nove bolinhas. Se tivermos mais uma bolinha, como será a representação simbólica deste numeral? Como já utilizamos todos os dez símbolos e não dispomos de outros, vamos recomeçar a sequência pegando novamente o 0, mas agora iremos trabalhar com dois dígitos. À esquerda deste zero devemos colocar o próximo símbolo. Como ainda não utilizamos nenhum símbolo nesta posição, ele seria o 0, mas como o zero não é um dígito significativo, pois ele representa a ausência, então o primeiro símbolo a utilizar será o 1. O próximo número será então: 10 - dez: | Note que a bolinha à esquerda do símbolo | representa as dez bolinhas, ou uma dezena e à direita do | não temos nenhuma bolinha, pois estamos representando o zero. Se tivermos uma bolinha a mais, ou seja, onze, a representação será: 11 - onze: | Repare que agora temos uma bolinha de cada lado do símbolo |, a bolinha à esquerda vale dez vezes mais que a da direita. A da esquerda vale dez e a da direita vale um. De doze a dezenove temos as seguintes representações: 12 - doze: | 13 - treze: | 14 - quatorze: | 15 - quinze: | 16 - dezesseis: | 17 - dezessete: | 18 - dezoito: | 19 - dezenove: | O critério é sempre o mesmo, a bolinha à esquerda do símbolo | vale dez vezes mais que qualquer uma das bolinhas da direita. E se tivermos outra bolinha a mais, qual será a representação? Como no novo ciclo já utilizamos todos os dígitos de 0 a 9, faremos tal qual no caso do dez. À direita utilizaremos o 0, e a esquerda utilizaremos o próximo símbolo. Como estávamos utilizando o 1, o próximo será o 2. Temos então: 20 - vinte: | Seguindo o raciocínio vinte e um será: 21 - vinte e um: | Para setenta e dois temos: 72 - setenta e dois: | Para noventa e nove temos: 99 - noventa e nove: | Com mais uma bolinha chegaremos a cem. Como já utilizamos os noves símbolos à direita do |, devemos novamente reiniciar em 0 e na esquerda devemos utilizar o próximo símbolo da sequência, mas acontece que na esquerda do | também já utilizamos os nove símbolos, então devemos voltar a 0 nesta posição e à sua esquerda utilizarmos o próximo símbolo. Como ainda não utilizamos nenhum e como não podemos utilizar o zero, pois ele não é significativo, utilizaremos o 1. A representação para o número cem será então: 100 - cem: | | Qualquer bolinha nesta posição valerá cem vezes mais que qualquer bolinha na posição da direita. Vejamos a representação para o número cento e onze: 111 - cento e onze: | | Temos uma bolinha na esquerda, outra no centro e uma outra na direita. Embora todas sejam representadas pelo símbolo 1, a da esquerda vale 100, a do meio vale 10 e a da direita vale 1 mesmo. A bolinha da direita ocupa a casa das unidades e por isto vale exatamente o que o seu símbolo representa, ou seja, vale 1 unidade. A bolinha à sua esquerda, isto é, a bolinha do centro, ocupa a casa das dezenas e por isto vale dez vezes mais do que o seu símbolo representa, ou seja, vale 10 unidades. Finalmente a bolinha à sua esquerda, isto é, a bolinha da esquerda, ocupa a casa das centenas e por isto vale cem vezes mais do que o seu símbolo representa, ou seja, vale 100 unidades. Ordens e Classes As casas das unidades, das dezenas e das centenas são chamadas de ordens. No sistema de numeração decimal a cada três ordens posicionadas da direita para a esquerda temos uma classe. A primeira classe, também da direita para a esquerda, é a das unidades, na sequência temos a classe dos milhares, dos milhões, bilhões e assim por diante conforme a figura abaixo: O número 111 visto acima está todo contido na classe das unidades simples. O dígito da esquerda é da ordem das centenas, por isto ao invés de 1 unidade, ele equivale a 100 unidades. O central é da ordem das dezenas, equivalendo então a 10 unidades ao invés de 1 unidade apenas. O dígito da direita é da ordem das unidades equivalendo ao próprio valor do símbolo 1 que é de 1 unidade. Para facilitar a leitura dos números com muitas classes, podemos separá-las utilizando o caractere ".", assim o número dois milhões, quinhentos e seis mil, oitocentos e trinta e nove pode ser escrito como 2.506.839. Este número é formado por três classes. A classe dos milhões é composta por uma única ordem, o dígito das unidades de milhões. Neste caso o símbolo 2 na verdade representa dois milhões unidades ( 2.000.000 ). Na segunda classe, a dos milhares, temos três ordens, cada uma com os seguintes valores: O símbolo 5 na ordem das centenas de milhar representa quinhentas mil unidades ( 500.000 ). O símbolo 0 na ordem das dezenas de milhar, como sabemos não representa qualquer unidade. O símbolo 6 na ordem das unidades de milhar representa seis mil unidades ( 6.000 ). Finalmente na primeira classe, a classe das unidades, temos: O símbolo 8 na ordem das centenas de unidades representa oitocentas unidades ( 800 ). O símbolo 3 na ordem das dezenas de unidades representa trintas unidades ( 30 ). O símbolo 9 na ordem das unidades de milhar representa nove unidades ( 9 ) O conjunto dos números naturais é representado pela letra maiúscula N e estes números são construídos com os algarismos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, que também são conhecidos como algarismos indo-arábicos. No século VII, os árabes invadiram a Índia, difundindo o seu sistema numérico. Embora o zero não seja um número natural no sentido que tenha sido proveniente de objetos de contagens naturais, iremos considerá-lo como um número natural uma vez que ele tem as mesmas propriedades algébricas que os números naturais. Na verdade, o zero foi criado pelos hindus na montagem do sistema posicional de numeração para suprir a deficiência de algo nulo. Para saber mais, clique nos links: Notas históricas sobre o zero ou Notação Posicional. Caso queira se aprofundar no assunto, veja o belíssimo livro: "História Universal dos Algarismos, Tomos I e II, Editora Nova Fronteira, 1998 e 1999", de Georges Ifrah. Na sequência consideraremos que os naturais têm início com o número zero e escreveremos este conjunto como: N = { 0, 1, 2, 3, 4, 5, 6, ...} Representaremos o conjunto dos números naturais com a letra N. As reticências (três pontos) indicam que este conjunto não tem fim. N é um conjunto com infinitos números. Excluindo o zero do conjunto dos números naturais, o conjunto será representado por: N* = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...} A construção dos Números Naturais Todo número natural dado tem um sucessor (número que vem depois do número dado), considerando também o zero. Exemplos: Seja m um número natural. (a) O sucessor de m é m+1. (b) O sucessor de 0 é 1. (c) O sucessor de 1 é 2. (d) O sucessor de 19 é 20. Se um número natural é sucessor de outro, então os dois números juntos são chamados números consecutivos. Exemplos: (a) 1 e 2 são números consecutivos. (b) 5 e 6 são números consecutivos. (c) 50 e 51 são números consecutivos. Vários números formam uma coleção de números naturais consecutivos se o segundo é sucessor do primeiro, o terceiro é sucessor do segundo, o quarto é sucessor do terceiro e assim sucessivamente. Exemplos: (a) 1, 2, 3, 4, 5, 6 e 7 são consecutivos. (b) 5, 6 e 7 são consecutivos. (c) 50, 51, 52 e 53 são consecutivos. Todo número natural dado n, exceto o zero, tem um antecessor (número que vem antes do número dado). Exemplos: Se m é um número natural finito diferente de zero. (a) O antecessor do número m é m-1. (b) O antecessor de 2 é 1. (c) O antecessor de 56 é 55. (d) O antecessor de 10 é 9. O conjunto abaixo é conhecido como o conjunto dos números naturais pares. Embora uma seqüência real seja um outro objeto matemático denominado função, algumas vezes utilizaremos a denominação sequência dos números naturais pares para representar o conjunto dos números naturais pares: P = { 0, 2, 4, 6, 8, 10, 12, ...} O conjunto abaixo é conhecido como o conjunto dos números naturais ímpares, às vezes também chamado, a sequência dos números ímpares. I = { 1, 3, 5, 7, 9, 11, 13, ...} Igualdade e Desigualdades Diremos que um conjunto A é igual a um conjunto B se, e somente se, o conjunto A está contido no conjunto B e o conjunto B está contido no conjunto A. Quando a condição acima for satisfeita, escreveremos A=B (lê-se: A é igual a B) e quando não for satisfeita denotaremos tal fato por: (lê-se: A é diferente de B). Na definição de igualdade de conjuntos, vemos que não é importante a ordem dos elementos no conjunto. Exemplo com igualdade: No desenho, em anexo, observamos que os elementos do conjunto A são os mesmos elementos do conjunto B. Neste caso, A=B. Consideraremos agora uma situação em que os elementos dos conjuntos A e B serão distintos. Sejam A={a,b,c,d} e B={1,2,3,d}. Nem todos os elementos do conjunto A estão no conjunto B e nem todos os elementos do conjunto B estão no conjunto A. Também não podemos afirmar que um conjunto é maior do que o outro conjunto. Neste caso, afirmamos que o conjunto A é diferente do conjunto B. Exercício: Há um espaço em branco entre dois números em cada linha. Qual é o sinal apropriado que deve ser posto neste espaço: <, > ou =? 159 170 852 321 587 587 Exercício: Representar analiticamente cada conjunto, isto é, através de alguma propriedade e depois por extensão, apresentando os elementos: Conjunto N dos números Naturais Conjunto P dos números Naturais Pares Conjunto I dos números Naturais Ímpares Conjunto E dos números Naturais menores que 16 Conjunto L dos números Naturais maiores que 11 Conjunto R dos números Naturais maiores ou iguais a 28 Conjunto C dos números Naturais que estão entre 6 e 10  Na sequência, estudaremos as duas principais operações possíveis no conjunto dos números naturais. Praticamente, toda a Matemática é construída a partir dessas duas operações: adição e multiplicação. A adição de números naturais A primeira operação fundamental da Aritmética, tem por finalidade reunir em um só número, todas as unidades de dois ou mais números. Antes de surgir os algarismos indo-arábicos, as adições podiam ser realizadas por meio de tábuas de calcular, com o auxílio de pedras ou por meio de ábacos. Propriedades da Adição Fechamento: A adição no conjunto dos números naturais é fechada, pois a soma de dois números naturais é ainda um número natural. O fato que a operação de adição é fechada em N é conhecido na literatura do assunto como: A adição é uma lei de composição interna no conjunto N. Associativa: A adição no conjunto dos números naturais é associativa, pois na adição de três ou mais parcelas de números naturais quaisquer é possível associar as parcelas de quaisquer modos, ou seja, com três números naturais, somando o primeiro com o segundo e ao resultado obtido somarmos um terceiro, obteremos um resultado que é igual à soma do primeiro com a soma do segundo e o terceiro. Elemento neutro: No conjunto dos números naturais, existe o elemento neutro que é o zero, pois tomando um número natural qualquer e somando com o elemento neutro (zero), o resultado será o próprio número natural. Comutativa: No conjunto dos números naturais, a adição é comutativa, pois a ordem das parcelas não altera a soma, ou seja, somando a primeira parcela com a segunda parcela, teremos o mesmo resultado que se somando a segunda parcela com a primeira parcela. Curiosidade: Tabela de adição Para somar dois números, com a tabela, um em uma linha e outro em uma coluna, basta fixar um número na 1a. coluna e um segundo número na 1a. linha. Na interseção da linha e coluna fixadas, obtemos a soma dos números. 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 16 17 18 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 21 Por exemplo, se tomarmos o número 7 na linha horizontal e o número 6 na linha vertical, obteremos a soma 13 que está no cruzamento da linha do 7 com a coluna do 6. Multiplicação de Números Naturais É a operação que tem por finalidade adicionar o primeiro número denominado multiplicando ou parcela, tantas vezes quantas são as unidades do segundo número denominado multiplicador. Exemplo: 4 vezes 9 é somar o número 9 quatro vezes: 4 x 9 = 9 + 9 + 9 + 9 = 36 O resultado da multiplicação é denominado produto e os números dados que geraram o produto, são chamados fatores. Usamos o sinal × ou · ou x, para representar a multiplicação. Propriedades da multiplicação Fechamento: A multiplicação é fechada no conjunto N dos números naturais, pois realizando o produto de dois ou mais númros naturais, o resultado estará em N. O fato que a operação de multiplicação é fechada em N é conhecido na literatura do assunto como: A multiplicação é uma lei de composição interna no conjunto N. Associativa: Na multiplicação, podemos associar 3 ou mais fatores de modos diferentes, pois se multiplicarmos o primeiro fator com o segundo e depois multiplicarmos por um terceiro número natural, teremos o mesmo resultado que multiplicar o terceiro pelo produto do primeiro pelo segundo. (m.n).p = m.(n.p) (3.4).5 = 3.(4.5) = 60 Elemento Neutro: No conjunto dos números naturais existe um elemento neutro para a multiplicação que é o 1. Qualquer que seja o número natural n, tem-se que: 1.n = n.1 = n 1.7 = 7.1 = 7 Comutativa: Quando multiplicamos dois números naturais quaisquer, a ordem dos fatores não altera o produto, ou seja, multiplicando o primeiro elemento pelo segundo elemento teremos o mesmo resultado que multiplicando o segundo elemento pelo primeiro elemento. m.n = n.m 3.4 = 4.3 = 12 Propriedade Distributiva Multiplicando um número natural pela soma de dois números naturais, é o mesmo que multiplicar o fator, por cada uma das parcelas e a seguir adicionar os resultados obtidos. m.(p+q) = m.p + m.q 6x(5+3) = 6x5 + 6x3 = 30 + 18 = 48 Divisão de Números Naturais Dados dois números naturais, às vezes necessitamos saber quantas vezes o segundo está contido no primeiro. O primeiro número que é o maior é denominado dividendo e o outro número que é menor é o divisor. O resultado da divisão é chamado quociente. Se multiplicarmos o divisor pelo quociente obteremos o dividendo. No conjunto dos números naturais, a divisão não é fechada, pois nem sempre é possível dividir um número natural por outro número natural e na ocorrência disto a divisão não é exata. Relações essenciais numa divisão de números naturais Em uma divisão exata de números naturais, o divisor deve ser menor do que o dividendo. 35 : 7 = 5 Em uma divisão exata de números naturais, o dividendo é o produto do divisor pelo quociente. 35 = 5 x 7 A divisão de um número natural n por zero não é possível pois, se admitíssemos que o quociente fosse q, então poderiamos escrever: n ÷ 0 = q e isto significaria que: n = 0 x q = 0 o que não é correto! Assim, a divisão de n por 0 não tem sentido ou ainda é dita impossível. Exercício: Substituindo X por 6 e Y por 9, qual é o valor da soma do dobro de X pelo triplo de Y. Potenciação de Números Naturais Para dois números naturais m e n, a expressão mn é um produto de n fatores iguais ao número m, ou seja: mn = m . m . m ... m . m m aparece n vezes O número que se repete como fator é denominado base que neste caso é m. O número de vezes que a base se repete é denominado expoente que neste caso é n. O resultado é donominado potência. Esta operação não passa de uma multiplicação com fatores iguais, como por exemplo: 23 = 2 × 2 × 2 = 8 43 = 4 × 4 × 4 = 64 Propriedades da Potenciação Uma potência cuja base é igual a 1 e o expoente natural é n, denotada por 1n, será sempre igual a 1. Exemplos: 1n = 1×1×...×1 (n vezes) = 1 13 = 1×1×1 = 1 17 = 1×1×1×1×1×1×1 = 1 Se n é um número natural não nulo, então temos que no=1. Por exemplo: (a) nº = 1 (b) 5º = 1 (c) 49º = 1 A potência zero elevado a zero, denotada por 0o, é carente de sentido no contexto do Ensino Fundamental. O visitante que necessitar aprofundamento neste assunto, deve visitar nosso link Zero elevado a zero? Qualquer que seja a potência em que a base é o número natural n e o expoente é igual a 1, denotada por n1, é igual ao próprio n. Por exemplo: (a) n¹ = n (b) 5¹ = 5 (c) 64¹ = 64 Toda potência 10n é o número formado pelo algarismo 1 seguido de n zeros. Exemplos: 103 = 1000 108 = 100.000.000 10o = 1 Potenciação com o browser Para obter uma potência Mn com o Browser Netscape, como por exemplo 125, digite (ou copie com Control+C) a linha de comando: javascript:Math.pow(12,5) exatamente da forma como está escrito, na caixa que aparece em seu browser com o nome do arquivo que está sendo acessado neste momento (location=endereço). Após isto, pressione a tecla ENTER. Você verá uma nova janela com a resposta 248832 Para sair da janela com a resposta, pressione o botão Voltar (Back) de seu browser. Números grandes No livro "Matemática e Imaginação", o matemático americano Edward Kasner apresentou um número denominado googol que pode ser representado por 1 seguido de 100 zeros. 1 Googol = 10100 Ele pensou que este era um número superior a qualquer coisa que passasse pela mente humana sendo maior do que qualquer coisa que pode ser posta na forma de palavras. Um googol é um pouco maior do que o número total de partículas elementares conhecidas no universo, algo da ordem de 1080. Se o espaço com estas partículas fosse comprimido de uma forma sólida com neutrons, este ficaria com algo em torno de 10128 partículas. Outro matemático criou então o googolplex e o definiu como 10 elevado ao googol. 1 Googolplex = 10Googol Exercícios Na figura abaixo, insira os números 1, 2, 3, 4, 5 e 6 nos círculos, de tal modo que a soma de cada lado seja sempre igual a 10. Um gavião viu um grupo de pombos, chegou perto deles e disse: Olá minhas 100 pombinhas. Uma delas respondeu: Não somos 100 não meu caro gavião, seremos 100, nós, mais dois tantos de nós e mais você meu caro gavião. Quantos pombos há neste grupo? Três homens querem atravessar um rio. O barco que eles possuem suporta no máximo 150 kg. Um deles pesa 50 kg, o segundo pesa 75 kg e o terceiro pesa 120 kg. Qual será o processo para eles atravessarem o rio sem afundar? Forme um quadrado mágico com os números 1, 2, 3, 4, 5, 6, 7, 8 e 9 tal que, a soma dos números de qualquer linha, qualquer coluna ou qualquer diagonal deverá ser sempre igual a 15. Construída por Everton Cirillo e Ulysses Sodré. Atualizada em 24/mar/2005.  Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por 3, então 3 é divisor de 15, assim, 15 é múltiplo de 3. Se 8 é divisível por 2, então 2 é divisor de 8, assim, 8 é múltiplo de 2. Se 20 é divisível por 5, então 5 é divisor de 20, assim, 20 é múltiplo de 5. Múltiplos de um número natural Denominamos múltiplo de um número o produto desse número por um número natural qualquer. Um bom exemplo de números múltiplos é encontrado na tradicional tabuada. Múltiplos de 2 (tabuada da multiplicação do número 2) 2 x 0 = 0 2 x 1 = 2 2 x 2 = 4 2 x 3 = 6 2 x 4 = 8 2 x 5 = 10 2 x 6 = 12 2 x 7 = 14 2 x 8 = 16 2 x 9 = 18 2 x 10 = 20 É assim sucessivamente. Múltiplos de 3 (tabuada da multiplicação do número 3) 3 x 0 = 0 3 x 1 = 3 3 x 2 = 6 3 x 3 = 9 3 x 4 = 12 3 x 5 = 15 3 x 6 = 18 3 x 7 = 21 3 x 8 = 24 3 x 9 = 27 3 x 10 = 30 É assim sucessivamente. Portanto, os múltiplo de 2 são: 0, 2, 4, 6, 8, 10, 12, 14, 18, 20, ... E os múltiplos de 3 são: 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ... Observe que os múltiplos do número escolhido obedecem a uma progressão aritmética com razão igual ao múltiplo estabelecido. Nos múltiplos de 2 a razão é 2, nos múltiplos de 3 a razão é 3 e assim sucessivamente. Veja mais exemplos: Múltiplos de 4: 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, ... Múltiplos de 5: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, ... Divisores de um número natural Um número é divisor de outro quando o resto da divisão for igual a 0. Portanto, 12 é divisível por 1, 2, 3, 4, 6 e 12. 36 é divisível por 1, 2, 3, 4, 6, 9, 12, 18 e 36. 48 é divisível por 1, 2, 3, 4, 6, 8, 12, 24 e 48. Observações importantes:  O menor divisor natural de um número é sempre o número 1.  O maior divisor de um número é o próprio número.  O zero não é divisor de nenhum número.  Os divisores de um número formam um conjunto finito. Alguns números têm apenas dois divisores: o 1 e ele mesmo. Esses números são chamados de primos. Observe os números primos de 1 a 100 destacados no crivo de Eratóstenes:  O papel das frações e números Decimais Esta página trata do estudo de frações e números decimais, bem como seus fatos históricos, propriedades, operações e aplicações. As frações decimais e números decimais possuem notória importância cotidiana. Tais conceitos são usados em muitas situações práticas, embora, muitas vezes passem despercebidas. Indo ao supermercado comprar 1/2 Kg de café por R$ 2,80 e pagando a compra com uma nota de R$ 5,00, obtém-se R$ 2,20 de troco. Neste exemplo, podemos observar o uso de frações e números decimais. Através deste tipo de compra, usamos o conceito de fração decimal juntamente com o sistema de pesagem (1/2 Kg), números decimais juntamente com o sistema monetário. Muitas outras situações utilizam de frações e números decimais. Observação: Para dividir um número X por outro número não nulo Y, usaremos frequentemente a notação X/Y, por ser mais simples. Elementos históricos sobre os números Decimais Hoje em dia é comum o uso de frações. Houve tempo, porém que as mesmas não eram conhecidas. O homem introduziu o uso de frações quando começou a medir e representar medidas. Os egípcios usavam apenas frações que possuiam o número 1 dividido por um número inteiro, como por exemplo: 1/2, 1/3, 1/4, 1/5,... Tais frações eram denominadas frações egípcias e ainda hoje têm muitas aplicações práticas. Outras frações foram descobertas pelos mesmos egípcios as quais eram expressas em termos de frações egípcias, como: 5/6=1/2+1/3. Os babilônios usavam em geral frações com denominador 60. É provável que o uso do número 60 pelos babilônios se deve ao fato que é um número menor do que 100 com maior quantidade de divisores inteiros. Os romanos, por sua vez, usavam constantemente frações com denominador 12. Provavelmente os romanos usavam o número 12 por ser um número que embora pequeno, possui um número expressivo de divisores inteiros. Com o passar dos tempos, muitas notações foram usadas para representar frações. A atual maneira de representação data do século XVI. Os números decimais têm origem nas frações decimais. Por exemplo, a fração 1/2 equivale à fração 5/10 que equivale ao número decimal 0,5. Stevin (engenheiro e matemático holandês), em 1585 ensinou um método para efetuar todas as operações por meio de inteiros, sem o uso de frações, no qual escrevia os números naturais ordenados em cima de cada algarismo do numerador indicando a posição ocupada pela vírgula no numeral decimal. A notação abaixo foi introduzida por Stevin e adaptada por John Napier, grande matemático escocês. 1437 1 2 3 = 1, 4 3 7 1000 A representação dos algarismos decimais, provenientes de frações decimais, recebia um traço no numerador indicando o número de zeros existentes no denominador. 437 100 = 4,37 Este método foi aprimorado e em 1617 Napier propôs o uso de um ponto ou de uma vírgula para separar a parte inteira da parte decimal. Por muito tempo os números decimais foram empregados apenas para cálculos astronômicos em virtude da precisão proporcionada. Os números decimais simplificaram muito os cálculos e passaram a ser usados com mais ênfase após a criação do sistema métrico decimal. Frações e Números Decimais Dentre todas as frações, existe um tipo especial cujo denominador é uma potência de 10. Este tipo é denominado fração decimal. Exemplos de frações decimais, são: 1/10, 3/100, 23/100, 1/1000, 1/103 Toda fração decimal pode ser representada por um número decimal, isto é, um número que tem uma parte inteira e uma parte decimal, separados por uma vírgula. A fração 127/100 pode ser escrita na forma mais simples, como: 127 100 = 1,27 onde 1 representa a parte inteira e 27 representa a parte decimal. Esta notação subentende que a fração 127/100 pode ser decomposta na seguinte forma: 127 100 = 100+27 100 = 100 100 + 27 100 = 1+0,27 = 1,27 A fração 8/10 pode ser escrita na forma 0,8, onde 0 é a parte inteira e 8 é a parte decimal. Aqui observamos que este número decimal é menor do que 1 porque o numerador é menor do que o denominador da fração. Leitura de números decimais Para ler números decimais é necessário primeiramente, observar a localização da vírgula que separa a parte inteira da parte decimal. Um número decimal pode ser colocado na forma genérica: Centenas Dezenas Unidades , Décimos Centésimos Milésimos Por exemplo, o número 130,824, pode ser escrito na forma: 1 Centena 3 dezenas 0 unidades , 8 décimos 2 centésimos 4 milésimos Exemplos: 0,6 Seis décimos 0,37 Trinta e sete centésimos 0,189 Cento e oitenta e nove milésimos 3,7 Três inteiros e sete décimos 13,45 Treze inteiros e quarenta e cinco centésimos 130,824 Cento e trinta inteiros e oitocentos e vinte e quatro milésimos Transformando frações decimais em números decimais Podemos escrever a fração decimal 1/10 como: 0,1. Esta fração é lida "um décimo". Notamos que a vírgula separa a parte inteira da parte fracionária: parte inteira parte fracionária 0 , 1 Uma outra situação nos mostra que a fração decimal 231/100 pode ser escrita como 2,31, que se lê da seguinte maneira: "dois inteiros e trinta e um centésimos". Novamente observamos que a vírgula separa a parte inteira da parte fracionária: parte inteira parte fracionária 2 , 31 Em geral, transforma-se uma fração decimal em um número decimal fazendo com que o numerador da fração tenha o mesmo número de casas decimais que o número de zeros do denominador. Na verdade, realiza-se a divisão do numerador pelo denominador. Por exemplo: (a) 130/100 = 1,30 (b) 987/1000 = 0,987 (c) 5/1000 = 0,005 Transformando números decimais em frações decimais Também é possível transformar um número decimal em uma fração decimal. Para isto, toma-se como numerador o número decimal sem a vírgula e como denominador a unidade (1) seguida de tantos zeros quantas forem as casas decimais do número dado. Como exemplo, temos: (a) 0,5 = 5/10 (b) 0,05 = 5/100 (c) 2,41 = 241/100 (d) 7,345 = 7345/1000 Propriedades dos números decimais Zeros após o último algarismo significativo: Um número decimal não se altera quando se acrescenta ou se retira um ou mais zeros à direita do último algarismo não nulo de sua parte decimal. Por exemplo: (a) 0,5 = 0,50 = 0,500 = 0,5000 (b) 1,0002 = 1,00020 = 1,000200 (c) 3,1415926535 = 3,141592653500000000 Multiplicação por uma potência de 10: Para multiplicar um número decimal por 10, por 100, por 1000, basta deslocar a vírgula para a direita uma, duas, ou três casas decimais. Por exemplo: (a) 7,4 x 10 = 74 (b) 7,4 x 100 = 740 (c) 7,4 x 1000 = 7400 Divisão por uma potência de 10: Para dividir um número decimal por 10, 100, 1000, etc, basta deslocar a vírgula para a esquerda uma, duas, três, ... casas decimais. Por exemplo: (a) 247,5 ÷ 10 = 24,75 (b) 247,5 ÷ 100 = 2,475 (c) 247,5 ÷ 1000 = 0,2475 Operações com números decimais Adição e Subtração: Para efetuar a adição ou a subtração de números decimais temos que seguir alguns passos: (a) Igualar a quantidade de casas decimais dos números decimais a serem somados ou subtraídos acrescentando zeros à direita de suas partes decimais. Por exemplo: (a) 2,4 + 1,723 = 2,400 + 1,723 (b) 2,4 - 1,723 = 2,400 - 1,723 (b) Escrever os numerais observando as colunas da parte inteira (unidades, dezenas, centenas, etc), de forma que: o algarismo das unidades de um número deverá estar embaixo do algarismo das unidades do outro número, o algarismo das dezenas de um número deverá estar em baixo do algarismo das dezenas do outro número, o algarismo das centenas deverá estar em baixo do algarismo das centenas do outro número, etc), a vírgula deverá estar debaixo da outra vírgula, e a parte decimal (décimos, centésimos, milésimos, etc) de forma que décimos sob décimos, centésimos sob centésimos, milésimos sob milésimos, etc. Dois exemplos: 2,400 2,400 + 1,723 - 1,723 ------- ------- (c) Realizar a adição ou a subtração. Multiplicação de números decimais: Podemos multiplicar dois números decimais transformando cada um dos números decimais em frações decimais e realizar a multiplicação de numerador por numerador e denominador por denominador. Por exemplo: 2,25×3,5 = 225 100 × 35 10 = 225×35 100×10 = 7875 1000 = 7,875 Podemos também multiplicar os números decimais como se fossem inteiros e dar ao produto tantas casas quantas forem as casas do multiplicando somadas às do multiplicador. Por exemplo: 2,25 2 casas decimais multiplicando x 3,5 1 casa decimal multiplicador 1125 + 675 7875 7,875 3 casas decimais Produto Divisão de números decimais: Como visto anteriormente, se multiplicarmos tanto o dividendo como o divisor de uma divisão por 10, 100 ou 1000, o quociente não se alterará. Utilizando essas informações poderemos efetuar divisões entre números decimais como se fossem divisões de números inteiros. Por exemplo: 3,6÷0,4=? Aqui, dividendo e divisor têm apenas uma casa decimal, logo multiplicamos ambos por 10 para que o quociente não se altere. Assim tanto o dividendo como o divisor serão números inteiros. Na prática, dizemos que "cortamos" a vírgula. 3,6÷0,4 = 3,6 0,4 = 36×10 4×10 = 36 4 = 9 Um outro exemplo: 0,35÷7= 0,35 7 = 0,35×100 7×100 = 35 700 = 35÷7 700÷7 = 5 100 = 0,05 Neste caso, o dividendo tem duas casas decimais e o divisor é um inteiro, logo multiplicamos ambos por 100 para que o quociente não se altere. Assim tanto o dividendo como o divisor serão inteiros. Exercício: Uma pessoa de bom coração doou 35 alqueires paulistas de terra para 700 pessoas. Sabendo-se que cada alqueire paulista mede 24.200 metros quadrados, qual será a área que cada um receberá? Divisão com o dividendo menor do que o divisor: Vamos considerar a divisão de 35 (dividendo) por 700 (divisor). Transforma-se o dividendo, multiplicando-se por 10, 100, ..., para obter 350 décimos, 3500 centésimos, ... até que o novo dividendo fique maior do que o divisor, para que a divisão se torne possível. Neste caso, há a necessidade de multiplicar por 100. Assim a divisão de 35 por 700 será transformada numa divisão de 3500 por 700. Como acrescentamos dois zeros ao dividendo, iniciamos o quociente com dois zeros, colocando-se uma vírgula após o primeiro zero. Isto pode ser justificado pelo fato que se multiplicarmos o dividendo por 100, o quociente ficará dividido por 100. dividendo 3500 700 divisor resto 0 0,05 quociente Realiza-se a divisão de 3500 por 700 para obter 5, concluindo que 0,35/7=35/700=0,05. Divisão de números naturais com quociente decimal: A divisão de 10 por 16 não fornecerá um inteiro no quociente. Como 10 < 16, o quociente da divisão não será um inteiro, assim para dividir o número 10 por 16, montamos uma tabela semelhante à divisão de dois números inteiros. 10 16 ? (1) Multiplicando o dividendo por 10, o quociente ficará dividido por 10. Isto justifica a presença do algarismo 0 seguido de uma vírgula no quociente. 100 16 0, (2) Realizamos a divisão de 100 por 16. O resultado será 6 e o resto será 4. 100 16 -96 0,6 4 (3) O resto 4 corresponde a 4 décimos = 40 centésimos, razão pela qual colocamos um zero (0) à direita do número 4. 100 16 -96 0,6 40 (4) Dividimos 40 por 16 para obter o quociente 2 e o novo resto será 8. 100 16 -96 0,62 40 -32 8 (5) O resto 8 corresponde a 8 centésimos = 80 milésimos, razão pela qual inserimos um 0 à direita do número 8. Dividimos 80 por 16 para obter o quociente 5 e o resto igual a 0. 100 16 -96 0,625 40 -32 80 -80 0 A divisão 10/16 é igual a 0,625. O o quociente é um número decimal exato, embora não seja um inteiro. Comparação de números decimais A comparação de números decimais pode ser feita analisando-se as partes inteiras e decimais desses números. Para isso, faremos uso dos sinais: > (que se lê: maior); < (que se lê: menor) ou = (que se lê: igual). Números com partes inteiras diferentes: O maior número é aquele que tem a parte inteira maior. Por exemplo: (a) 4,1 > 2,76, pois 4 é maior do que 2. (b) 3,7 < 5,4, pois 3 é menor do que 5. Números com partes inteiras iguais: Igualamos o número de casas decimais acrescentando zeros tantos quantos forem necessários. Após esta operação, teremos dois números com a mesma parte inteira mas com partes decimais diferentes. Basta comparar estas partes decimais para constatar qual é o maior deles. Alguns exemplos, são: (a) 12,4 > 12,31 pois 12,4=12,40 e 40 > 31. (b) 8,032 < 8,47 pois 8,47=8,470 e 032 < 470. (c) 4,3 = 4,3 pois 4=4 e 3=3. Ao abrir um jornal, ligar uma televisão, olhar vitrines, é comum depararmos com expressões do tipo: A inflação do mês foi de 4% (lê-se quatro por cento) Desconto de 10% (dez por cento) nas compras à vista. O índice de reajuste salarial de março é de 0,6% (seis décimos por cento) A porcentagem é um modo de comparar números usando a proporção direta, onde uma das razões da proporção é uma fração cujo denominador é 100. Toda razão a/b na qual b=100 chama-se porcentagem. Exemplos: (1) Se há 30% de meninas em uma sala de alunos, pode-se comparar o número de meninas com o número total de alunos da sala, usando para isto uma fração de denominador 100, para significar que se a sala tivesse 100 alunos então 30 desses alunos seriam meninas. Trinta por cento é o mesmo que 30 100 = 30% (2) Calcular 40% de R$300,00 é o mesmo que determinar um valor X que represente em R$300,00 a mesma proporção que R$40,00 em R$100,00. Isto pode ser resumido na proporção: 40 100 = X 300 Como o produto dos meios é igual ao produto dos extremos, podemos realizar a multiplicação cruzada para obter: 100X=12000, assim X=120 Logo, 40% de R$300,00 é igual a R$120,00. (3) Li 45% de um livro que tem 200 páginas. Quantas páginas ainda faltam para ler? 45 100 = X 200 o que implica que 100X=9000, logo X=90. Como eu já li 90 páginas, ainda faltam 200-90=110 páginas.  
Exibindo 1 Item
Comments