UNIDAD II. Logica Matematica

La lógica matemática es una parte de la lógica y las matemáticas, que consiste en el estudio matemático de la lógica y en la aplicación de este estudio a otras áreas de las matemáticas. La lógica matemática tiene estrechas conexiones con la ciencias de la computación y la lógica filosófica.

La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican nociones intuitivas de objetos matemáticos como conjuntos, números, demostraciones y computación.

La lógica matemática suele dividirse en cuatro subcampos: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la recursión. La investigación en lógica matemática ha jugado un papel fundamental en el estudio de los fundamentos de las matemáticas.

Según Evandro Agazzi actualmente se usa indiferentemente como sinónimas las expresiones: lógica simbólica( o logística), lógica matemática, lógica teorética y lógica formal.
La lógica matemática no es la «lógica de las matemáticas» sino la «matemática de la lógica». Incluye aquellas partes de la lógica que pueden ser modeladas y estudiadas matemáticamente.
 

Lógica matemática fue el nombre dado por Giuseppe Peano para esta disciplina. En esencia, es la lógica de Aristóteles, pero desde el punto de vista de una nueva notación, más abstracta, tomada del álgebra.

Previamente ya se hicieron algunos intentos de tratar las operaciones lógicas formales de una manera simbólica por parte de algunos filósofos matemáticos como Leibniz y Lambert, pero su labor permaneció desconocida y aislada.

Fueron George Boole y Augustus De Morgan, a mediados del siglo XIX, quienes primero presentaron un sistema matemático para modelar operaciones lógicas. La lógica tradicional aristotélica fue reformada y completada, obteniendo un instrumento apropiado para investigar sobre los fundamentos de la matemática.

El tradicional desarrollo de la lógica enfatizaba su centro de interés en la forma de argumentar, mientras que la actual lógica matemática lo centra en un estudio combinatorio de los contenidos. Esto se aplica tanto a un nivel sintáctico (por ejemplo, el envío de una cadena de símbolos perteneciente a un lenguaje formal a un programa compilador que lo convierte en una secuencia de instrucciones ejecutables por una máquina), como a un nivel semántico, construyendo modelos apropiados (teoría de modelos). La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican conceptos intuitivos de objetos matemáticos como conjuntos, números, demostraciones y computación.

Logica de predicados

La lógica de predicados es un lenguaje formal donde las sentencias bien formadas son producidas por las reglas enunciadas a continuación.

Vocabulario

Un vocabulario es una tupla que consta de:

  • r símbolos relacionales Ri, cada uno de ellos con un número entero ai asociado, el cual se conoce como la aridad de Ri
  • s símbolos funcionales fj, cada uno de aridad bj
  • t símbolos constantes ck

Una fórmula de primer orden  en el vocabulario τ, es una fórmula de primer orden donde los únicos predicados, funciones y constantes empleados son los especificados por τ.