Ex.1 - Système d’unités
Toutes les unités du Système International (SI) dérivent des unités fondamentales de longueur (m : mètre), de masse (kg : kilogramme ), de temps (s : seconde) et de température (K : kelvin) :
a- Donner la dimension et l'unité d'une pression dans le Système International (SI). Rappeler les autres unités employées couramment.
Rép. : [P] = kg.m-1.s-2 = 1 Pa
1 atm = 1,01325.105 Pa = 1,01325 bar = 760 mmHg ; 1 bar = 105 Pa
b- Donner la loi des gaz parfaits. En déduire l'unité de la constante R.
Rép. : PV = nRT ; R = 8,314 j.K-1.mol-1
c- Calculer le volume molaire d'un gaz parfait à 0° C sous la pression atmosphérique normale de 101 325 Pa.
Rép. : Vm = 22,4 L
Ex. 2 - Equation d’état (1)
Une bouteille d'hydrogène de volume 100 L contient à 20 °C un gaz comprimé sous 200 bar : Calculer le nombre de moles, la masse du gaz et sa pression à 500 °C.
Rép. : n = 821 mol ; m = 1,642 kg ; P2 = 527,63 bar
Ex. 3 - Equation d’état (2)
Un ballon contient 2,25 mol d’hélium (He) à T=25 °C, sa pression est de 135 kPa. Que deviendra la pression dans le ballon, lorsqu'on ajoute 1,75 mol sous une température de 0 °C ? On considère la variation du volume comme négligeable.
Rép. : P2 = 219,866.103 Pa ≈ 220 kPa
Ex. 4 - Pressions partielles
Un gramme de dihydrogène et un gramme de dioxygène sont introduits dans un flacon de 2 litres à 27 °C :
a- Calculer la pression partielle de chacun des gaz, puis la pression totale.
Rép. : PH2 = 6,24.105 Pa ; PO2 = 0,39.105 Pa ; Pt = 6,63.105 Pa = 6,63 bar
b- Calculer la composition du mélange en fractions molaires.
Rép. : xH2 = 94,12% ; xO2 = 5,88%
Ex. 5 - Transformations réversibles / irréversibles (1)
Déterminer le travail mis en jeu par 2 litres de gaz parfait maintenus à 25 °C sous la pression de 5 atm (état 1) qui se détend de façon isotherme pour occuper un volume de 10 L (état 2) :
a- de façon réversible
Rép. : Wrev(1→2) = -1 630,4 J
b- de façon irréversible.
Rép. : Wirrev(1→2) = -810,6 J
c- Refaire les deux calculs pour la compression du gaz, à la même température, de l’état 2 à l’état 1. Conclusion ?
- de façon réversible : Rép. : Wrev(2→1) = 1 630,4 J
- de façon irréversible : Rép. : Wirrev(2→1) = 4 053 J
Lors de la compression (E2 → E1) la transformation irréversible demande plus d'énergie.
Ex. 6 - Transformations réversibles / irréversibles (2)
Session Rattrapage 2020/21
Un gaz parfait sous une pression de 5 atm, à la température initiale de 28 °C et occupant un volume V1 = 4 L, subit une détente irréversible isobare. Le travail produit par cette transformation est W1→2 = - 1 500 J.
a- Calculer le nombre de moles : Rép. : n = 0,81 mol
b- Calculer V2 le volume après la détente : Rép. : V2 = 7,0.10-3 m3 = 7,0 L
c- Calculer la température T2 de l’état final en K : Rép. : T2 527 K
Données : R = 8,31 J.K-1.mol-1 = 0,082 L.atm.K-1.mol-1 ; on prend 1 atm ≈ 105 Pa