contactores

1. EL CONTACTOR.

1.1. DEFINICION Y GENERALIDADES.

 Podemos definir un contactor como un aparato mecánico de conexión y desconexión eléctrica, accionado por cualquier forma de energía, menos manual, capaz de establecer, soportar e interrumpir corrientes en condiciones normales del circuito, incluso las de sobrecarga.

    Las energías utilizadas para accionar un contactor pueden ser muy diversas: mecánicas, magnéticas, neumáticas, fluídricas, etc.. Los contactores corrientemente utilizados en la industria son accionados mediante la energía magnética proporcionada por una bobina, y a ellos nos referimos seguidamente.

    Un contactor accionado por energía magnética, consta de un núcleo magnético y de una bobina capaz de generar un campo magnético suficientemente grande como para vencer la fuerza de los muelles antagonistas que mantienen separada del núcleo una pieza, también magnética, solidaria al dispositivo encargado de accionar los contactos eléctricos.

   

    Así pues, característica importante de un contactor será la tensión a aplicar a la bobina de accionamiento, así como su intensidad ó potencia. Según sea el fabricante, dispondremos de una extensa gama de tensiones de accionamiento, tanto en continua como en alterna siendo las más comúnmente utilizadas, 24, 48, 220, y 380. La intensidad y potencia de la bobina, naturalmente dependen del tamaño del contador.

    El tamaño de un contactor, depende de la intensidad que es capaz de establecer, soportar e interrumpir, así como del número de contactos de que dispone (normalmente cuatro). El tamaño del contactor también depende de la tensión máxima de trabajo que puede soportar, pero esta suele ser de 660 V. para los contactores de normal utilización en la industria.

    Referente a la intensidad nominal de un contactor, sobre catálogo y según el fabricante, podremos observar contactores dentro de una extensa gama, generalmente comprendida entre 5 A y varios cientos de amperios. Esto equivale a decir que los contactores son capaces de controlar potencias dentro de un amplio margen; así, por ejemplo, un contactor para 25 A. conectado en una red bifásica de 380 V. es capaz de controlar receptores de hasta 380ð 25=9.500 VA. y si es trifásica 3ð 220ð 25=16.454 VA. Naturalmente nos referimos a receptores cuya carga sea puramente resistiva (cos ð = 1), ya que de lo contrario, las condiciones de trabajo de los contactos quedan notablemente modificadas.

    Cuando el fabricante establece la corriente característica de un contactor, lo hace para cargas puramente óhmicas y con ella garantiza un determinado número de maniobras, pero si el cosð de la carga que se alimenta a través del contactor es menor que uno, el contactor ve reducida su vida como consecuencia de los efectos destructivos del arco eléctrico, que naturalmente aumentan a medida que disminuye el cos ð .

    Por lo general, los contactores que utilicemos referirán sus características a las recomendaciones C. E. I (Comité Electrotécnico Internacional), que establecen los siguientes tipos de cargas:

    AC-1   Para cargas resistivas o débilmente inductivas cos ð = 0,95.

    AC-2   Para cargar inductivas (cos ð = 0.65) .Arranque e inversión de marcha de motores de anillos rozantes.

    AC-3   Para cargas fuertemente inductivas (cos ð = 0.35 a 0.65). Arranque y desconexión de motores de jaula.

    AC-4   Para motores de jaula: Arranque, marcha a impulsos y frenado por inversión.

    Prácticamente, la casi totalidad de las aplicaciones industriales, tales como máquinas-herramientas, equipos para minas, trenes de laminación, puentes-grúas, etc., precisan de la colaboración de gran número de motores para realizar una determinada operación, siendo conveniente que puedan ser controlados por un único operador situado en un "centro de control", desde donde sea posible observar y supervisar todas las partes de la instalación. Esta clase de trabajo no se puede realizar con interruptores o cualquier otro elemento de gobierno que precise de un mando manual directo, debido a que el operador no tendría tiempo material de accionar los circuitos que correspondiesen de acuerdo con las secuencias de trabajo. Estos y otros problemas similares pueden quedar solventados con el uso de contactores montados según un circuito de marcha-paro que denominaremos "función memoria" y que es base de los automatismos eléctricos.

1.2.DESCRIPCION DEL CONTACTOR.

   'Contactores y Elementos Auxiliares de Mando'

La figura anterior describe las partes del contactor.

1.2.1. PARTES DEL CONTACTOR.

  • CARCAZA.

    La carcaza es el elemento en el cual se fijan todos los componentes conductores del contactor, para lo cual es fabricada en un material no conductor con propiedades como la resistencia al calor, y un alto grado de rigidez. Uno de los mas utilizados materiales es la fibra de vidrio pero tiene un inconveniente y es que este material es quebradizo y por lo tanto su manipulación es muy delicada. En caso de quebrarse alguno de los componentes no es recomendable el uso de pegantes.

  • ELECTROIMAN.

    También es denominado circuito electromagnético, y es el elemento motor del contactor.

    Esta compuesto por una serie de elementos cuya finalidad es transformar la energía eléctrica en un campo magnético muy intenso mediante el cual se produce un movimiento mecánico aprovechando las propiedades electromagnéticas de ciertos materiales.

    • BOBINA.

    Consiste en una arrollamiento de alambre de cobre con unas características muy especiales con un gran número de espiras y de sección muy delgada para producir un campo magnético. El flujo magnético produce un par magnético que vence los pares resistentes de los muelles de manera que la armadura se puede juntar con el núcleo estrechamente.

     

    Para el caso cuando una bobina se energiza con corriente alterna, se produce una corriente de magnitud muy alta puesto que solo se cuenta con la resistencia del conductor, ya que la reactancia inductiva de la bobina es muy baja debido al gran entrehierro que existe entre la armadura y el núcleo, esta corriente tiene factor de potencia por consiguiente alto, del orden de 0.8 a 0.9 y es llamada corriente de llamada.

    Esta corriente elevada produce un campo magnético muy grande capaz de vencer el par ejercido por los muelles o resorte que los mantiene separados y de esta manera se cierra el circuito magnético uniéndose la armadura con el núcleo trayendo como consecuencia el aumento de la reactancia inductiva y así la disminución de hasta aproximadamente diez veces la corriente produciéndose entonces una corriente llamada corriente de mantenimiento con un factor de potencia más bajo pero capaz de mantener el circuito magnético cerrado.

    Para que todo este procedimiento tenga éxito las bobinas deben ser dimensionadas para trabajar con las corrientes bajas de mantenimiento pues si no se acciona el mecanismo de cierre del circuito magnético la corriente de llamada circulará un tiempo más grande del previsto pudiendo así deteriorar la bobina.

     

    EL NUCLEO.

    Su función es concentrar y aumentar el flujo magnético con el fin de atraer la armadura eficientemente. Está construido de láminas de acero al silicio superpuestas y unidas firmemente unas con otras con el fin de evitar las corrientes parásitas.

    El pequeño entrehierro entre la armadura y el núcleo se crea con el fin de eliminar los magnetismos remanentes.

    Cuando circula una corriente alterna por la bobina es de suponerse que cuando la corriente pasa por el valor cero, el núcleo se separa de la armadura puesto que el flujo también es cero pero como esto sucede 120 veces en un segundo (si la frecuencia es de 60Hz) por lo cual en realidad no hay una verdadera separación pero esto sin embargo genera vibraciones y un zumbido además del aumento de la corriente de mantenimiento; por esto las bobinas que operan con corriente alterna poseen unos dispositivos llamados espiras de sombra las cuales producen un flujo magnético desfasado con el principal de manera que se obtiene un flujo continuo similar al producido por una corriente continua.

  • ARMADURA.

    Es un elemento móvil muy parecido al núcleo pero no posee espiras de sombra, su función es la de cerrar el circuito magnético ya que en estado de reposo se encuentra separada del núcleo. Este espacio de separación se denomina entrehierro o cota de llamada.

    Tanto el cierre como la apertura del circuito magnético suceden en un espacio de tiempo muy corto (10 milisegundos aproximadamente), todo debido a las características del muelle, por esto se pueden presentar dos situaciones.

    • Cuando el par resistente es mayor que el par electromagnético, no se logra atraer la armadura.

    • Si el par resistente es débil no se lograra la separación rápida de la armadura.

    Cada una de las acciones de energizar o desenergizar la bobina y por consiguiente la atracción o separación de la armadura, es utilizada para accionar los contactos que obran como interruptores, permitiendo o interrumpiendo el paso de la corriente. Estos contactos están unidos mecánicamente (son solidarios) pero son separados eléctricamente.

  • CONTACTOS.

    'Contactores y Elementos Auxiliares de Mando'

    El objeto de estos elementos es permitir o interrumpir el paso de la corriente, son elementos conductores, los cuales se accionan tan pronto se energiza o se desenergiza la bobina por lo que se les denomina contactos instantáneos. Esta función la cumplen tanto en el circuito de potencia como en el circuito de mando.

    Los contactos están compuestos por tres partes dos de las cuales son fijas y se encuentran ubicadas en la carcaza y una parte móvil que une estas dos y posee un resorte para garantizar el contacto

    Las partes que entran en contacto deben tener unas características especiales puesto que al ser accionados bajo carga, se presenta un arco eléctrico el cual es proporcional a la corriente que demanda la carga, estos arcos producen sustancias que deterioran los contactos pues traen como consecuencia la corrosión, también las características mecánicas de estos elementos son muy importantes.

    • CONTACTOS PRINCIPALES.

    Son los encargados de permitir o interrumpir el paso de la corriente en el circuito principal, es decir que actúa sobre la corriente que fluye de la fuente hacia la carga.

    Es recomendable estar verificando la separación de estos que permiten que las partes fijas y móviles se junten antes de que el circuito magnético se cierre completamente, esta distancia se le denomina cota de presión. Esta no debe superar el 50%.

     

    • CONTACTOS SECUNDARIOS.

    Estos contactos secundarios se encuentran dimensionados para corrientes muy pequeñas porque estos actúan sobre la corriente que alimenta la bobina del contactor o sobre elementos de señalización.

    Dado que en ocasiones deben trabajar con los PLC estos contactos deben tener una confiabilidad muy alta.

    • Contacto normalmente abierto: (NA o NO), llamado también contacto instantáneo de cierre: contacto cuya función es cerrar un circuito, tan pronto se energice la bobina del contactor. En estado de reposo se encuentra abierto.

    • Contacto normalmente cerrado: (NC), llamado también contacto instantáneo de apertura, contacto cuya función es abrir un circuito, tan pronto se energice la bobina del contactor. En estado de reposo se encuentra cerrado.

             

    Vídeo de YouTube

     
     
     
     
     
     
     

    1.3. FUNCIONAMIENTO DEL CONTACTOR.

    Cuando la bobina se energiza genera un campo magnético intenso, de manera que el núcleo atrae a la armadura, con un movimiento muy rápido. Con este movimiento todos los contactos del contactor, principales y auxiliares, cambian inmediatamente y de forma solidaria de estado.

    Existen dos consideraciones que debemos tener en cuenta en cuanto a las características de los contactores:

    • Poder de cierre: Valor de la corriente independientemente de la tensión, que un contactor puede establecer en forma satisfactoria y sin peligro que sus contactos se suelden.

    • Poder de corte: Valor de la corriente que el contactor puede cortar, sin riesgo de daño de los contactos y de los aislantes de la cámara apagachispas. La corriente es más débil en cuanto más grande es la tensión.

    Para que los contactos vuelvan a su posición anterior es necesario desenergizar la bobina. Durante esta desenergización o desconexión de la bobina (carga inductiva) se producen sobre-tensiones de alta frecuencia, que pueden producir interferencias en los aparatos electrónicos.

    Desde del punto de vista del funcionamiento del contactor las bobinas tienen la mayor importancia y en cuanto a las aplicaciones los contactos tienen la mayor importancia.

    1.4. CLASIFICACION DE LOS CONTACTORES.

    Los contactores se pueden clasificar de acuerdo con:

    • Por su construcción

    • . Contactores electromecánicos: Son aquellos ya descritos que funcionan de acuerdo a principios eléctricos, mecánicos y magnéticos.

    • Contactores estáticos o de estado sólido: Estos contactores se construyen a base de tiristores. Estos presentan algunos inconvenientes como:

    •  

    1.2.1. CATEGORIA DE EMPLEO.

    Para establecer la categoría de empleo se tiene en cuenta el tipo de carga controlada y las condiciones en las cuales se efectúan los cortes.

    Las categorías más usadas en AC son:

    • AC1: Cargas no inductivas (resistencias, distribución) o débilmente inductivas, cuyo factor de potencia sea por lo menos 0.95.

    • AC2: Se refiere al arranque, al frenado en contracorriente y a la marcha por impulso permanente de los motores de anillos.

    Al cierre el contactor establece el paso de corrientes de arranque equivalentes a más o menos 2.5 la corriente nominal del motor. A la apertura el contactor debe cortar la intensidad de arranque, con una tensión inferior o igual a la tensión de la red.

    • AC3: Para el control de motores jaula de ardilla (motores de rotor en cortocircuito) que se apagan a plena marcha.

    Al cierre se produce el paso de corrientes de arranque, con intensidades equivalentes a 5 o más veces la corriente nominal del motor. A la apertura corta el paso de corrientes equivalentes a la corriente nominal absorbida por el motor. Es un corte relativamente fácil.

    • AC4: Se refiere al arranque, al frenado en contracorriente y a la marcha por impulso permanente de los motores de jaula.

    Al cierre se produce el paso de la corriente de arranque, con intensidades equivalentes a 5 o más veces la corriente nominal del motor. Su apertura provoca el corte de la corriente nominal a una tensión, tanto mayor como tanto mayor es la velocidad del motor. Esta tensión puede ser igual a la tensión de la red. El corte es severo.

    En corriente continua se encuentran cinco categorías de empleo: DC1, DC2, DC3, DC4 y DC5.

    Un mismo contactor dependiendo de la categoría de empleo, puede usarse con diferentes corrientes.

    Comments