Leila Bridgeman, PhD

Leila Bridgeman received B.Sc. and M.Sc. degrees in Applied Mathematics in 2008 and 2010 from McGill University, Montreal, QC, Canada, where she recently completed her Ph.D. in Mechanical engineering. Her doctoral research involved a return to the foundational work of George Zames, exploring how the theory of conic sectors can be used to design controllers that guarantee closed-loop input-output stability when more conventional methods fail to apply. Her graduate studies involved research semesters at University of Michigan, University of Bern, and University of Victoria, along with an internship at Mitsubishi Electric Research Laboratories (MERL) in Boston, MA.

Through her research, Leila strives to bridge the gap between theoretical results in robust and optimal control and their use in practice. She explores how the tools of numerical analysis and input-output stability theory can be applied to the most challenging of controls problems, including the control of delayed, open-loop unstable, and nonminimum-phase systems. Her focus has been on the development of readily-applicable controller synthesis and stability analysis methods based on the evaluation of linear matrix inequalities (LMIs). Resulting publications have considered applications of this work to robotic, process control, and time-delay systems.

Leila is also interested in model predictive control (MPC) especially when applied to switched systems. She continues to collaborate with colleagues at Mitsubishi Electric Research Labs (MERL), enabling the use of MPC in novel applications including networked systems, vehicle control, heating, and ventilation.

Email: leila.bridgeman@duke.edu
Phone: 919-660-1260
Address:  North Building, Office 129, 304 Research Dr, Durham, NC 27708, USA
Mail to: Duke Robotics, North Building, 304 Research Dr-Box 103957, Durham, NC 27708

PhD Mechanical Engineering, McGill University, 2016
MSc Applied Mathematics, McGill University, 2010
BSc Honours Applied Mathematics, McGill University, 2008
Assistant Professor, Duke MEMS, starting 2018
Postdoctoral Researcher, Duke MEMS, starting 2017
Intern, Mitsubishi Electric Research Laboratories, 2015
Research Interests
Robust and optimal control, linear matrix inequalities (LMIs), model predictive control (MPC), delayed systems, input-output stability, passivity

Recent Publications
L.J. Bridgeman & J.R. Forbes. Conic bounds for systems subject to delays. IEEE Trans. Automatic Control, 2016.
L.J. Bridgeman, C. Danielson, & S. Di Cairano. Stability and feasibility of MPC for switched linear systems with dwell-time constraints. American Control Conf.
L.J. Bridgeman & J.R. Forbes. The extended conic sector theorem. IEEE Trans. Automatic Control, 2016.
L.J. Bridgeman & J.R. Forbes. The exterior conic sector lemma. Int. J. Control, 2015 (accepted).

May 31, 2017. I just returned from the 2017 American Control Conference in Seattle, Washington, where I co-chaired the Robust Control I session and presented some recent work on optimal, observer-based, conic controller design. As always, it was great to catch-up with colleagues at other universities and learn about research happening across the continent.

May 25, 2017. The videos from the Duke Robotics Symposium are up!

Duke Robotics Symposium 2017: Leila Bridgeman