### emps

2.2.4.A

EMPS

Extended Munafo Prefix System

" If BIPM decides to adopt further prefixes for 10^27 and 10^30 and their reciprocals 10^-27 and 10^-30, they will probably adopt something vaguely resembling names for nine and ten ... "

-- Robert P. Munafo

Go Back Home

PROPOSAL I : EXTENDED MUNAFO PREFIXES

A PRACTICAL APPROACH

Note that I did ask permission to suggest an extension to Munafo's prefixes in an email. Munafo did not seem to mind one way or the other, and considered the excersize impractical. None the less, I wish to present an extension that I worked out based on the pattern clearly established by the Munafo Prefixes.

Recall that Munafo said that if the BIPM did accept new prefixes they would probably be something along the lines of : novetta , novemo , decetta, and decemo. He also suggested the prefix symbols "No-" , "no-" , "De-", and "de-" respectively. The prefixes are clearly derived from the latin words for 9 and 10, namely "novem" and "decem".

A practical approach to extending the SI system, would be to find a simple way to adapt number words into prefixes. This is exactly what Munafo's prefixes do with latin numbers. The logical way to extend this system is therefore to use a simple adaption scheme. I have done this, and I have also come up with a practical way to devise prefix symbols for it. Unfortunately I can't really take credit for this idea. Munafo clearly meant for the system to be extended in this manner provided it was neccessary. For this reason I say the credit for this system should really be given to Robert P. Munafo. The table that follows presents the prefixes , and symbols I have devised based on Munafo's scheme along with the BIPM prefixes [1]...

-----------------------------------------------------------------------------------------------

EXTENDED MUNAFO PREFIX SYSTEM (EMPS)

Note : Prefixes in red are already BIPM certified.

PREFIX                            SYMBOL    VALUE           ETYMOLOGY

kilo-                           k-            10^3             greek : "thousand"

milli-                          m-           10^-3            latin : "thousandth"

mega-                        M-           10^6             greek : "big"

micro-                        µ-            10^-6            greek : "small"

giga-                         G-            10^9             greek : "giant"

nano-                        n-            10^-9            greek : "dwarf"

tera-                         T-            10^12            greek : "monster"

pico-                         p-            10^-12           spanish : "tiny bit"

peta-                         P-           10^15             greek : "five"

femto-                       f-           10^-15             Dano-Norwegian : "fifteen"

exa-                          E-          10^18              greek : "six"

atto-                         a-          10^-18             Dano-Norwegian : "eighteen"

zetta-                       Z-           10^21              latin : "seven"

zepto-                       z-           10^-21            latin : "seven"

yotta-                       Y-           10^24             latin : "eight"

yocto-                       y-           10^-24            latin : "eight"

novetta-                    No-          10^27             latin : "nine" (novem)

novemo-                    no-          10^-27            latin : "nine" (novem)

decetta-                    De-          10^30             latin : "ten" (decim)

decemo-                    de-          10^-30            latin : "ten" (decim)

undecetta-                 U-           10^33             latin : "11" (undecim)

undecemo-                 u-           10^-33            latin : "11" (undecim)

duodecetta-               Du-          10^36             latin : "12" (duodecim)

duodecemo-               du-          10^-36            latin : "12" (duodecim)

tredecetta-                Tr-           10^39            latin : "13" (tredecim)

tredecemo-                tr-            10^-39          latin : "13" (tredecim)

quattuordecetta-        Q-             10^42           latin : "14" (quattuordecim)

quattuordecemo-         q-            10^-42          latin : "14" (quattuordecim)

quindecetta-               Qu-          10^45           latin : "15" (quindecim)

quindecemo-                qu-          10^-45         latin : "15" (quindecim)

sexdecetta-                 S-           10^48          latin : "16" (sexdecim)

sexdecemo-                 s-            10^-48        latin : "16" (sexdecim)

septendecetta-            Se-          10^51         latin : "17" (septendecim)

septendecemo-            se-          10^-51        latin : "17" (septendecim)

octodecetta-               Oc-          10^54        latin : "18" (octodecim)

octodecemo-               oc-          10^-54        latin : "18" (octodecim)

novemdecetta-            Nd-          10^57         latin : "19" (novemdecim)

novemdecemo-            nd-           10^-57       latin : "19" (novemdecim)

vigintetta-                  V-             10^60        latin : "20" (viginti)

vigintemo-                  v-             10^-60       latin : "20" (viginti)

unvigintetta-               Uv-           10^63        latin : "21" (unviginti)

unvigintemo-               uv-           10^-63       latin : "21" (unviginti)

duovigintetta-             Dv-           10^66        latin : "22" (duoviginti)

duovigintemo-             dv-           10^-66       latin : "22" (duoviginti)

trevigintetta-              Tv-           10^69        latin : "23" (treviginti)

trevigintemo-               tv-           10^-69      latin : "23" (treviginti)

quattuorvigintetta-       Qv-           10^72       latin : "24" (quattuorviginti)

quattuorvigintemo-       qv-           10^-72      latin : "24" (quattuorviginti)

quinvigintetta-             Quv-         10^75       latin : "25" (quinviginti)

quinvigintemo-             quv-         10^-75      latin : "25" (quinviginti)

sexvigintetta-              Sv-           10^78       latin : "26" (sexviginti)

sexvigintemo-              sv-           10^-78      latin : "26" (sexviginti)

septenvigintetta-         Spv-         10^81       latin : "27" (septenviginti)

septenvigintemo-         spv-          10^-81     latin : "27" (septenviginti)

octovigintetta-            Ov-           10^84      latin : "28" (octoviginti)

octovigintemo-            ov-           10^-84     latin : "28" (octoviginti)

novemvigintetta-         Nv-           10^87      latin : "29" (novemviginti)

novemvigintemo-         nv-           10^-87     latin : "29" (novemviginti)

trigintetta-                 Tg-           10^90      latin : "30" (triginti)

trigintemo-                 tg-            10^-90    latin : "30" (triginti)

untrigintetta-              Ut-           10^93      latin : "31" (untriginti)

untrigintemo-              ut-            10^-93    latin : "31" (untriginti)

duotrigintetta-            Dt-            10^96     latin : "32" (duotriginti)

duotrigintemo-            dt-            10^-96    latin : "32" (duotriginti)

tretrigintetta-             Tt-           10^99      latin : "33" (tretriginti)

tretrigintemo-              tt-           10^-99    latin : "33" (tretriginti)

quattuortrigintetta-      Qt-          10^102    latin : "34" (quattuortriginti)

quattuortrigintemo-       qt-         10^-102   latin : "34" (quattuortriginti)

quintrigintetta-             Qut-       10^105    latin : "35" (quintriginti)

quintrigintemo-             qut-       10^-105   latin : "35" (quintriginti)

sextrigintetta-              St-         10^108    latin : "36" (sextriginti)

sextrigintemo-              st-         10^-108    latin : "36" (sextriginti)

septentrigintetta-         Spt-        10^111     latin : "37" (septentriginti)

septentrigintemo-         spt-         10^-111    latin : "37" (septentriginti)

octotrigintetta-            Ot-          10^114     latin : "38" (octotriginti)

octotrigintemo-             ot-          10^-114   latin : "38" (octotriginti)

novemtrigintetta-          Nt-          10^117    latin : "39" (novemtriginti)

novemtrigintemo-          nt-           10^-117  latin : "39" (novemtriginti)

quinquagintetta-             Qug-            10^150    latin : "50" (quinquaginti)

quinquagintemo-             Qug-            10^-150       latin : "50" (quinquaginti)

unquinquagintetta-          Uqu-            10^153         latin : "51" (unquinquaginti)

unquinquagintemo-          uqu-            10^-153        latin : "51" (unquinquaginti)

duoquinquagintetta-         Dqu-           10^156         latin : "52" (duoquinquaginti)

duoquinquagintemo-         dqu-           10^-156        latin : "52" (duoquinquaginti)

trequinquagintetta-          Tqu-           10^159         latin : "53" (trequinquaginti)

trequinquagintemo-          tqu-            10^-159       latin : "53" (trequinquaginti)

quattuorquinquagintetta-  Qqu-           10^162         latin : "54" (quattuorquinquaginti)

quattuorquinquagintemo-  qqu-            10^-162       latin : "54" (quattuorquinquaginti)

quinquinquagintetta-        Quu-            10^165        latin : "55" (quinquinquaginti)

quinquinquagintemo-        quu-             10^-165      latin : "55" (quinquinquaginti)

sexquinquagintetta-         Squ-             10^168       latin : "56" (sexquinquaginti)

sexquinquagintemo-         squ-              10^-168      latin : "56" (sexquinquaginti)

septenquinquagintetta-    Spu-              10^171       latin : "57" (septenquinquaginti)

septenquinquagintemo-    spu-               10^-171     latin : "57" (septenquinquaginti)

octoquinquagintetta-       Oqu-              10^174       latin : "58" (octoquinquaginti)

octoquinquagintemo-       oqu-               10^-174     latin : "58" (octoquinquaginti)

novemquinquagintetta-    Nqu-               10^177      latin : "59" (novemquinquaginti)

novemquinquagintemo-    nqu-                10^-177    latin : "59" (novemquinquaginti)

sexagintetta-                Sg-                  10^180     latin : "60" (sexaginti)

sexagintemo-                sg-                   10^-180   latin : "60" (sexaginti)

unsexagintetta-            Us-                   10^183     latin : "61" (unsexaginti)

unsexagintemo-            us-                   10^-183    latin : "61" (unsexaginti)

duosexagintetta-          Ds-                   10^186     latin : "62" (duosexaginti)

duosexagintemo-           ds-                   10^-186   latin : "62" (duosexaginti)

tresexagintetta-            Ts-                   10^189    latin : "63" (tresexaginti)

tresexagintemo-            ts-                    10^-189  latin : "63" (tresexaginti)

quattuorsexagintetta-     Qs-                   10^192   latin : "64" (quattuorsexaginti)

quattuorsexagintemo-     qs-                    10^-192  latin : "64" (quattuorsexaginti)

quinsexagintetta-           Qus-                  10^195   latin : "65" (quinsexaginti)

quinsexagintemo-           qus-                   10^-195  latin : "65" (quinsexaginti)

sexsexagintetta-            Ss-                    10^198   latin : "66" (sexsexaginti)

sexsexagintemo-            ss-                    10^-198  latin : "66" (sexsexaginti)

septensexagintetta-       Sps-                  10^201    latin : "67" (septensexaginti)

septensexagintemo-       sps-                  10^-201   latin : "67" (septensexaginti)

octosexagintetta-          Os-                  10^204     latin : "68" (octosexaginti)

octosexagintemo-          os-                  10^-204    latin : "68" (octosexaginti)

novemsexagintetta-       Ns-                  10^207     latin : "69" (novemsexaginti)

novemsexagintemo-       ns-                  10^-207    latin : "69" (novemsexaginti)

septuagintetta-            Spg-                10^210      latin : "70" (septuaginti)

septuagintemo-             spg-               10^-210     latin : "70" (septuaginti)

unseptuagintetta-         Usp-                10^213      latin : "71" (unseptuaginti)

unseptuagintemo-          usp-               10^-213     latin : "71" (unseptuaginti)

duoseptuagintetta-        Dsp-               10^216      latin : "72" (duoseptuaginti)

duoseptuagintemo-        dsp-               10^-216     latin : "72" (duoseptuaginti)

treseptuagintetta-         Tsp-               10^219      latin : "73" (treseptuaginti)

treseptuagintemo-         tsp-                10^-219    latin : "73" (treseptuaginti)

quattuorseptuagintetta-  Qsp-               10^222     latin : "74" (quattuorseptuaginti)

quattuorseptuagintemo-   qsp-               10^-222   latin : "74" (quattuorseptuaginti)

quinseptuagintetta-         Qup-              10^225    latin : "75" (quinseptuaginti)

quinseptuagintemo-         qup-              10^-225   latin : "75" (quinseptuaginti)

sexseptuagintetta-          Ssp-              10^228    latin : "76" (sexseptuaginti)

sexseptuagintemo-          ssp-               10^-228   latin : "76" (sexseptuaginti)

septenseptuagintetta-     Spp-               10^231    latin : "77" (septenseptuaginti)

septenseptuagintemo-     spp-                10^-231  latin : "77" (septenseptuaginti)

octoseptuagintetta-        Osp-                10^234   latin : "78" (octoseptuaginti)

octoseptuagintemo-        osp-                 10^-234  latin : "78" (octoseptuaginti)

novemseptuagintetta-     Nsp-                 10^237   latin : "79" (novemseptuaginti)

novemseptuagintemo-     nsp-                 10^-237  latin : "79" (novemseptuaginti)

octogintetta-                Og-                  10^240    latin : "80" (octoginti)

octogintemo-                 og-                  10^-240  latin : "80" (octoginti)

unoctogintetta-              Uo-                  10^243   latin : "81" (unoctoginti)

unoctogintemo-              uo-                  10^-243  latin : "81" (unoctoginti)

duooctogintetta-            Do-                  10^246   latin : "82" (duooctoginti)

duooctogintemo-             do-                 10^-246   latin : "82" (duooctoginti)

treoctogintetta-              To-                 10^249    latin : "83" (treoctoginti)

treoctogintemo-               to-                 10^-249   latin : "83" (treoctoginti)

quattuoroctogintetta-       Qo-                 10^252    latin : "84" (quattuoroctoginti)

quattuoroctogintemo-        qo-                10^-252   latin : "84" (quattuoroctoginti)

quinoctogintetta-              Quo-              10^255    latin : "85" (quinoctoginti)

quinoctogintemo-              quo-              10^-255   latin : "85" (quinoctoginti)

sexoctogintetta-               So-               10^258     latin : "86" (sexoctoginti)

sexoctogintemo-               so-                10^-258   latin : "86" (sexoctoginti)

septenoctogintetta-          Spo-              10^261     latin : "87" (septenoctoginti)

septenoctogintemo-          spo-               10^-261   latin : "87" (septenoctoginti)

octooctogintetta-             Oo-                10^264    latin : "88" (octooctoginti)

octooctogintemo-             oo-                10^-264   latin : "88" (octooctoginti)

novemoctogintetta-          Noo-              10^267     latin : "89" (novemoctoginti)

novemoctogintemo-          noo-               10^-267   latin : "89" (novemoctoginti)

nonagintetta-                  Ng-                10^270     latin : "90" (nonaginti)

nonagintemo-                  ng-                10^-270    latin : "90" (nonaginti)

unnonagintetta-               Un-               10^273      latin : "91" (unnonaginti)

unnonagintemo-               un-                10^-273    latin : "91" (unnonaginti)

duononagintetta-             Dn-                10^276     latin : "92" (duononaginti)

duononagintemo-             dn-                 10^-276   latin : "92" (duononaginti)

trenonagintetta-              Tn-                 10^279    latin : "93" (trenonaginti)

trenonagintemo-              tn-                  10^-279   latin : "93" (trenonaginti)

quattuornonagintetta-      Qn-                 10^282     latin : "94" (quattuornonaginti)

quattuornonagintemo-      qn-                 10^-282    latin : "94" (quattuornonaginti)

quinnonagintetta-            Qun-               10^285     latin : "95" (quinnonaginti)

quinnonagintemo-             qun-               10^-285    latin : "95" (quinnonaginti)

sexnonagintetta-              Sn-                10^288      latin : "96" (sexnonaginti)

sexnonagintemo-               sn-                10^-288    latin : "96" (sexnonaginti)

septennonagintetta-          Spn-              10^291      latin : "97" (septennonaginti)

septennonagintemo-          spn-               10^-291    latin : "97" (septennonaginti)

octononagintetta-             On-                10^294     latin : "98" (octononaginti)

octononagintemo-              on-                10^-294   latin : "98" (octononaginti)

novemnonagintetta-           Nn-                10^297    latin : "99" (novemnonaginti)

novemnonagintemo-           nn-                10^-297   latin : "99" (novemnonaginti)

centetta-                         Ce-                10^300    latin : "100" (centum)

centemo-                         ce-                10^-300   latin : "100" (centum)

----------------------------------------------------------------------------------------------

You may notice that the roots of these terms are identical to those used for the -illion series. This is because they are derived from the same latin numbers. At 200 prefixes I'm able to pick prefix symbols of 3 symbols or less. I could of coarse continue with the latin to uncentetta, duocentetta, etc. and eventually reach as far as milletta- (10^3000) and millemo- (10^-3000), but the prefix symbols would become obtuse. Ideally I don't like prefix symbols to contain more than 3 letters.

Extending beyond 10^3000 would lead to some ambiguity. One could extend of coarse with unmilletta- , duomilletta- , etc. The problem is how to extend this in such a way to make the grouping clear. For example, what would 10^6000 be ? we could choose something like dumilletta-, but this is very close to duomilletta-. There also aren't many latin number words beyond 1000 (at least not in the ancient latin ). One further step might be to use the latin word "myria" which means 10,000. We could adapt it to form myriatta- (10^30,000) and myriamo- (10^-30,000).

Assuming we accept a grouping system we could get as far as the 999,999 pair of prefixes ... perhaps novemnonagintanoncentimillinovemnonagintanoncentetta- (10^2,999,997) and novemnonagintanoncentimillinovemnonagintanoncentemo- (10^-2,999,997).

For the time being however I think working the system up to the 100th pair of prefixes suffices. This system is already roughly 5 times longer than Jim Blowers system, and 3 times longer than H.Paul Shuch's. That makes this, to the best of my knowledge, the longest extension of the SI prefix system yet proposed.

The only problem of this system is that the EMPS prefixes are usually very long ! Take for example ... septenseptuagintetta- (10^231), and now compare it to something like exa- (10^18). There really are no catchy sounding prefixes above and below yotta- and yocto- in this system. Even Munafo's original prefixes, novetta- and decetta- each contain 7 letters, while the BIPM prefixes never exceed 5 letters. Still The EMP System works well as a default system. If you need a giant prefix and don't know what to use, you can always simply use one of those sprawling EMPS prefixes.

Another important issue to consider is the use of the prefix symbols. If you saw the term "Qusm" how would you interpret this. We can assume that the last letter is the base unit , m , for meters. The question is what is the prefix Qus- mean ? It doesn't make much sense to remember 200 prefix symbols, but if you look more carefully you'll see that a pattern is built into it to make it easier to remember. The first letter or 2 specifies the ones place value, while the ending letter specifies the tens place value. For example Qus- breaks up into Qu- and -s- . The Qu- stands for 5 while the -s- for 6, thus Qus- is the 65th large scale prefix. To find the power of ten the prefix represents simply multiply this number by 3, thus 10^(3*65) = 10^195. You can use the table above to check this. Thus 1 Qusm = 10^195 meters. The usefulness of this excersize is questionable, but it at least shows that it could be done. If such systems seem confusing and obtuse it's not because an effort hasn't been made to extend the BIPM system in a logical and simple way. Rather the difficulty lies in the fact that all such systems will inevitably become more complex and more difficult to work with as the range of expressibility increases. This is exactly what occurred when we tried to give unique names to all counting numbers. The system eventually became impractical. This phenomenon is not limited to this one example, it applies to any naming convention which attempts to label an endless sequence of items. Even counting in english has limitations (as we will learn in a later chapter).

The point is that at some point we have to stop. It is not possible to have a prefix name for every integer power of 1000. As ExNihilo says ...

" There's no need for an alternative, there simply is no recognised name for 10^27, just as there is no recognised name for 10^30, 10^33, or 10^30000 - there are an infinite number of powers of ten, do you think there are an infinite number of words to describe them? " -- ExNihilo

I couldn't have put it better myself.

So what alternatives are there to the EMP System ? See proposal II.

You can go back to the main article or you can jump to Proposal II directly ...

NEXT>> Proposal II - SEPS

Go Back Home