Kumar Avinava Dubey

PhD Student


Machine Learning Department,

Carnegie Mellon University,

5000 Forbes Avenue,

Pittsburgh, PA 15213,

USA.

avinava.dubey@gmail.com

News

Old version of the website is here ( http://www.cs.cmu.edu/~akdubey/ ).

Publications (dblp, scholar)

Deep Networks & Graphical Models

  • Transformation Autoregressive Networks - J. Oliva, A. Dubey, M. Zaheer, B. Poczos, R. Salakhutdinov, E. P. Xing, J. Schneider. International Conference on Machine Learning (ICML) 2018 [arXiv:1801.09819]
  • Contextual Explanation Networks - M. Al-Shedivat, A. Dubey, E.P. Xing [arXiv:1705.10301]
  • Recurrent Estimation of Distributions - A. Dubey*, J. Oliva*, B. Poczos, J. Schneider, E. P. Xing - [arXiv:1705.10750]

Scalable Inference & Bayesian Nonparametrics

  • Variance Reduction in Stochastic Gradient Langevin Dynamics -- A. Dubey*, S. Reddi*, S. Williamson, B. Poczos, A. Smola, E. Xing. Advances in Neural Information Processing Systems (NIPS) 2016. [pdf]
  • Bayesian Nonparametric Kernel-Learning -- A. Dubey*, J. Oliva*, A. Wilson, B. Poczos, J. Schneider, E. P. Xing. International Conference on Artificial Intelligence and Statistics (AISTATS) 2016. [pdf]
  • Estimating Accuracy from Unlabeled Data: A Bayesian Approach -- E. Platanios, A. Dubey, T. Mitchell. International Conference of Machine Learning (ICML) 2016. [pdf, supplementary]
  • Large-scale Distributed Dependent Nonparametric Trees -- Z. Hu, Q. Ho, A. Dubey, E. P. Xing, The 32th International Conference on Machine Learning (ICML) 2015. [pdf]
  • Large-scale randomized-coordinate descent methods with non-separable linear constraints -- S. Reddi, A. Hefny, A. Dubey, C. Downey, S. Sra. International Conference on Conference on Uncertainty in Artificial Intelligence (UAI) 2015. [arXiv:1409.2617]
  • Dependent nonparametric trees for dynamic hierarchical clustering -- A. Dubey*, Q. Ho*, S.Williamson and E. P. Xing, Advances in Neural Information Processing Systems (NIPS) 2014 [pdf] [DAP]
  • Parallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models -- A. Dubey, S.Williamson and E. P. Xing, International Conference on Conference on Uncertainty in Artificial Intelligence (UAI) 2014. [pdf]
  • Spatial Compactness meets Topical Consistency: Jointly modeling Links and Content for Community Detection -- M. Sachan, A. Dubey, S. Srivastava, E. P. Xing and E. Hovy, International Conference on Web Search and Data Mining (WSDM) 2014. [pdf]
  • Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models -- S. Williamson, A. Dubey, E. P. Xing. The 30th International Conference on Machine Learning (ICML) 2013 [pdf]
  • A Non-parametric Mixture Model for Topic Modeling Over Time -- A. Dubey, A. Hefny, S. Williamson, E. P. Xing, Proceedings of The Thirteenth SIAM International Conference on Data Mining (SDM) 2013. [pdf]
  • Learning Dirichlet Process from Partially Observed Groups -- A. Dubey, I. Bhattacharya, M. Das, T. Faruqie, and C. Bhattacharyya, IEEE International Conference on Data Mining (ICDM) 2011. [pdf]

Question Answering & Information Retrieval

  • From Textbooks to Knowledge: A Case Study in Harvesting Axiomatic Knowledge from Textbooks to Solve Geometry Problems -- M. Sachan, A. Dubey, E.P. Xing. Conference on Empirical Methods in Natural Language Processing (EMNLP) 2017. [pdf]
  • Science Question Answering using Instructional Materials -- M. Sachan, A. Dubey, E. P. Xing. Association for Computational Linguistics (ACL) 2016. [pdf]
  • Learning Answer-Entailing Structures for Machine Comprehension -- M. Sachan, A. Dubey, M. Richardson, E. P. Xing, Association for Computational Linguistics (ACL) 2015. [pdf, Best paper nomination, Selected as one of the Outstanding Papers]
  • AUSUM: approach for unsupervised bug report summarization -- S. Mani, R. Catherine, V. S. Sinha, A. Dubey, ACM 20th International Symposium on the Foundations of Software Engineering (SIGSOFT) 2012. [pdf]
  • Diversity in Ranking via Resistive Graph Centers -- A. Dubey, S. Chakrabarti, C. Bhattacharyya, 17th ACM Conference on Knowledge Discovery and Data Mining (SIGKDD) 2011. [pdf]
  • A Cluster-Level Semi-Supervision Model for Interactive Clustering -- A. Dubey, I. Bhattacharya, S. Godbole, The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD) 2010. [pdf]
  • Conditional Models for Non-smooth Ranking Loss Functions -- A. Dubey, J. Machchhar, C. Bhattacharyya and S. Chakrabarti, IEEE International Conference on Data Mining (ICDM) 2009. [pdf]

* denotes equal contribution

Workshop & Other Publications

  • Contextual Explanation Networks Enable Integrated Analysis Of Imaging And Genomic Data - B. Lengerich, M. Al-Shedivat, A. Dubey, A. Alavi, J. Williams and E. Xing. ISMB 2018 Abstracts
  • The Intriguing Properties of Model Explanations - M. Al-Shedivat, A. Dubey, E.P. Xing. Advances in Neural Information Processing Systems (NIPS) 2017 Symposium on Interpretable Machine Learning [pdf]
  • Patient Specific Survival Prediction with Explanations - M. Al-Shedivat, A. Dubey, E.P. Xing. Advances in Neural Information Processing Systems (NIPS) 2017 ML for Health Workshop (ML4H) [pdf]
  • Parallel Markov chain Monte Carlo for the Indian buffet process. - M. Zhang, A. Dubey, S. Williamson, Advances in Neural Information Processing Systems (NIPS) Workshop on Bayesian Nonparametrics: The Next Generation 2015. [pdf]
  • Integrating Transition-based and Graph-based Parsing Using Integer Linear Programming - A. Hefny, A. Dubey, S. J. Reddy, Advances in Neural Information Processing Systems 28 (NIPS ) Workshop Modern ML + NLP [pdf]
  • Efficient and Accurate Local Learning for Ranking, S. Banerjee, A. Dubey, J. Machchhar, S. Chakrabarti, 32nd Annual ACM SIGIR Conference workshop on Learning to Rank for Information Retrieval , Boston, USA, July 2009. [pdf]

Patents