Solanum tuberosum / Aardappel

Nachtschade-achtigen of Solanacaea. Een intrigerende naam voor een plantenfamilie. En dat is niet toevallig, want tot deze familie behoren zowel goed eetbare als zwaar giftige soorten. Het leeuwendeel van die planten behoort tot het geslacht Solanum met meer dan 1500 soorten. Het woord Solanum zou terug te voeren zijn op solari (Lat.), dat troosten betekent, 'soelaas' geven. Er zijn inderdaad Solanumsoorten, die een pijnstillende en narcotische werking hebben.
Tot die Solanumsoorten behoort een der allerbelangrijkste voedselgewassen ter wereld, Solanum tuberosum L., de aardappel. Deze plant is een goed voorbeeld van de eigenaardige manier, waarop giftigheid in deze plantenfamilie voorkomt. Er zijn giftige soorten maar ook totaal onschadelijke en soorten die deels giftig en deels goed voedsel zijn. De aardappel draagt kleine, tomaat-achtige vruchten, die gevaarlijk en schadelijk zijn als ze gegeten worden, maar de onderaardse knolvormig stengelstukken zijn one alom bekende aardappelen.
Alle groene delen van de aardappel-plant zijn overigens verdacht en niet zelden schadelijk voor de gezondheid. De plant komt in het wild in de Andes voor, waar de ZuidAmerikaanse bevolking op de gematigd warme berghellingen van oudsher aardappels
kweekte. Spanjaarden maakten er, vrij lang na Columbus, kennis mee (± 1530) en probeerden de knollen als scheepsproviand. Op thuisreis werd dit schip door Britten onderschept en men plantte de knollen in Ierland. Als voedsel hadden zij weinig succes,men at ze eigenlijk meer als noodrantsoen geschikt voor tijden van tegenspoed. Ongeveer 150 jaar geleden was het dan zover, dat aardappels een in Europa algemeen aanvaarde kost werd.

Omstreeks 1835 brak in België een aardappelziekte uit, een schimmel, die binnen 10 jaar de Europese aardappelcultuur vrijwel vernietigd had, maar door wetenschappelijk onderzoek (kruising, selectie, ziektebestrijding, chemisch en biologisch) kwam men deze en andere teeltproblemen te boven. Tientallen producten worden industrieel uit aardappels gemaakt (meel, alcohol, chips...).

Medische geschiedenis van de aardappel
De bekende Clusius, tijdgenoot van Dodoens ontving knollen en zaden van de aardappelplant op 26 januari 1588 van Philippe de Sivry, heer van Walhain. Een jaar tevoren had De Sivry deze nieuwe plant gekregen onder de naam Taratoufli. Clusius maakte de eerste wetenschappelijke beschrijving van de aardappel in zijn Rariorum Plantarum Historia in 1601 onder de naam Arachidna; in de inventaris van 1594 wordt ze
Papas Americanorum genoemd.

In Artsenijgewassen 18de eeuw, wordt de aardappel nog Knobbelige nachtschade genoemd en goed bevonden om stijfsel, jenever, haarpoeder en brood te maken. De aardappel stond in die tijd ook bekend om zijn gas- en windvormende eigenschappen, net zoals vele andere eetbare knollen, maar ook als lust opwekkend middel werd het onder andere beschreven door Abraham Munting. Hij schreef 'ze zijn zeer gezond voor elk,
inzonderheid voor oude manspersonen, versterken de maag en het gehele lichaam, maken goed bloed en verwekken lust tot 't echte werk.'

In de volkse natuurgeneeskunde van zowat 60 jaar geleden is de aardappel volop aanwezig Bijvoorbeeld Heer Oom in zijn 'geneeskundige planten' beschouwt de gewone gekookte aardappelen als goed tegen suikerzieke, reuma en jicht. ' De aardappel vermindert immers het suikergehalte in de urine, evenals de zurigheid en dienvolgens de pijnen in de vleesweefsels van de jicht- en reumalijders.' beweert hij. Het rauwe sap wordt nog altijd geadviseerd ook als zuurbindend middel bij maagpijn en maagontsteking. Al zou ik dat toch maar kortstondig gebruiken, bijvoorbeeld 3 maal daags een eetlepel gedurende 2 dagen.

Uitwendig gebruik
Uitwendig als kompres lijkt het mij nuttiger en ook veiliger. Geraspte rauwe aardappel als pleister op lichte brandwonden, bedaart vlug de pijn, schrijft Heer Oom en vers sap zou eksterogen en wratten doen verdwijnen, volgens dezelfde bron. Tegen wratten snij je eenaardappel middendoor en wrijft met het sappige snijvlak enkele dagen over die huidverhardingen. 'Om de wortel te doen verdrogen en daarna te kunnen uithalen met de
vingers.' dixit onze Heer.

Ook ons aller Mellie Uyldert gebruikt de aardappel maar nu de schil om wratten op te lossen. Verder adviseert ook zij, rauwe aardappel tegen spit, isschias en pijnlijke gezwollen gewrichten. Wel in schijfjes gesneden en in zakjes op de pijnlijke plaatsen gelegd.
 
Het is duidelijk dat vooral de anti-inflammatoire werking op de gewrichten goed bekend was. Wetenschappelijk is dat, voor zover ik weet, niet goed onderbouwd, dus bij deze weer een advies aan de wetenschappers om dit eens verder uit te zoeken.

Toch een wetenschappelijk onderzoekje
ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum) Anne Pihlanto, a, , Sari Akkanena and Hannu J. Korhonena. Agrifood Research Finland, Biotechnologyand Food Research, Et Building, FIN-31600 Jokioinen, Finland. 13 December 2007.

Planta Med. 2008 Apr;74(5):491-6. doi: 10.1055/s-2008-1074495. Potato (Solanum tuberosum) juice exerts an anticonvulsant effect in mice through binding to GABA receptors.
Muceniece R1, Saleniece K, Krigere L, Rumaks J, Dzirkale Z, Mezhapuke R, Kviesis J, Mekss P, Klusa V, Schiöth HB, Dambrova M.
Naturally occurring benzodiazepines have been identified in regular food such as wheat and potato, but there is still no evidence that potato extracts can affect CNS responses in vivo. Here we found that undiluted potato juice and potato juice diluted with saline 1 : 2 administered 10 min intracisternally ( I. C.) and 30 min per os before bicuculline exerted significant anticonvulsant activity in the bicuculline-induced seizure threshold test in mice. In vitro, potato juice from different harvests at dilution series from 10 % to 0.000001 %, diluted 100,000-fold, displaced 50 % of gamma-aminobutyric acid (GABA) receptor ligand [ (3)H]GABA and diluted 40-fold displaced 50 % of [(3)H]flunitrazepam from binding sites in mice forebrain membranes. 
The low content of diazepam (0.04 +/- 0.01 mg/kg) determined by HPLC and mass spectrometry in the potato extracts could not sustain the anticonvulsant activity of potato juice in vivo; therefore we hypothesized that potato juice might contain GABA (A) receptor GABA-site active compounds. The findings of this study suggest that potato juice as well as potato taken as food may have the capacity of influencing brain GABA-ergic activity.



Solanum tuberosum monograph Drugscom

The potato is a weedy plant recognized for its tuberous growth and valued as a commercial food. Potatoes are propagated from the underground runners of the plant from the “eyes.” 1 , 2

History
Potatoes have been cultivated since 500 BC; Central and South American Indians were probably among the first to select hardy cultivators of the potato as a food staple. 2 , 3 Despite the Spanish introduction of the plant into Europe in the late 1500s, the tubers did not become a popular food source until the 17th century because of religious and mythological concerns about the toxicity of the plant. Once accepted, potatoes were widely disseminated to Germany, other parts of Europe, and Russia.
By the 17th and 18th centuries, potatoes formed such a large part of the Irish diet that intake for adults exceeded 8 lb/day. The fungal disease known as potato blight destroyed more than 80% of the crop in the 1840s, resulting in the starvation of more than 3 million Irish and the emigration of many more. 3
Raw potato has been used traditionally in poultices for arthritis, infections, boils, burns, and sore eyes; potato peel tea has been used to soothe edema or bodily swelling; and raw potato juice has been ingested to soothe gastritis or stomach disorders. 4
The potato remains an important food crop, with over 200 million metric tons harvested annually worldwide, surpassed only by wheat. 3 Potatoes are also used as a source of starch and in the manufacture of alcoholic beverages. 5

Chemistry
Potatoes are rich in starch, with potato maltodextrin used in the preparation of commercial foods. Varying amounts of potassium, iron, riboflavin, folate, and vitamins are found primarily in the thick periderm of the skin. 3 , 6 , 7 Potatoes are a poor source of protein, with only about 2% to 10% as protein content. 3

The potato contains a variety of steroidal alkaloids chemically related by the cholestane ring structure. The major toxic glycoalkaloids are alpha-chaconine and alpha-solanine, with others, including the leptines and teptidine, found in the leaves of some, but not all, species. 3 , 8 Protease inhibitors, phenolic compounds, and lectins have also been identified. 3 , 9 , 10 Processing can induce the toxic compound acrylamide. 11 , 12 Pesticide residues can be found in the skin of the potato tuber, but are largely removed by washing in water, acetic acid, or salt, as well as by peeling or frying. 13

Uses and Pharmacology
Diabetes
The relationship between the consumption of potatoes and risk of type 2 diabetes is unclear. A gender-related response has been suggested. 14 , 15 In the Nurses' Health Study, the risk of type 2 diabetes was higher with increased potato consumption, especially among obese women. 15 A study conducted among men and women with type 2 diabetes found the intake of potatoes was directly related to insulin resistance and fasting plasma glucose levels in men, but the same relationship was not found for women. An unresolved, confounding issue was that men consumed approximately 50% more potatoes per day, leading to the suggestion of a threshold effect. 14

The glycemic index of potatoes is influenced by the cultivar and the cooking method. The common US russet potato has a moderately high glycemic index (approximately 71 when baked, similar to that of white bread). 16 A reduced glycemic response is obtained when potatoes are precooked and eaten cold or reheated. 16 , 17 , 18

Lipid profile/antioxidant action
Experiments in rats found decreased plasma cholesterol and triglyceride levels with a whole (including the skin) potato-enriched diet over a 3-week period. The plasma antioxidant capacity was also increased. 19 In vitro experiments have also evaluated the antioxidant effect of potato tubers; however, equivalent clinical experiments are lacking. 20 , 21

Other uses
An antiproliferative effect on human colon and liver cancer cells has been demonstrated in vitro. 3 , 22 Glycoalkaloids from other species have demonstrated inhibitory action on tumors in mice and human solid tumor cell lines, as well as on basal and squamous cell carcinomas and adenocarcinomas. 20 , 22 , 23 The traditional use of potato juice for the management of dyspepsia has been supported by limited clinical trials. 24

Proteins derived from potato tubers have demonstrated proteolytic activity. The elucidation of protease inhibitors from different potato species and potential clinical applications is an area of ongoing research. 25 , 26 , 27

Dosage
There is no clinical evidence to support a specific potato dosage. The widespread use of the tubers as food is tempered by the occurrence of toxic glycoalkaloids, especially in sprouting potatoes.

Excessive consumption of potatoes in people with severe renal function impairment may lead to hyperkalemia, although dicing and boiling reduces the potassium content. 6 , 17 , 18

Studies among volunteers suggest that adverse GI symptoms result from total glycoalkaloid concentrations of 2 to 5 mg/kg body weight. 3 , 9 The biological half-life of alpha-solanine has been estimated to be 10.7 hours, and 19.1 hours for alpha-chaconine. 8 , 9 A recommended acceptable level of total glycoalkaloid concentration in commercial potato cultivars is not more than 200 mg/kg fresh potato, but the safety of this level is disputed and has not been officially adopted in the United States. 3 , 10

Pregnancy/Lactation
Generally recognized as safe when used as food. Avoid excessive consumption because safety and efficacy are unproven.

The contribution of potato glycoalkaloids to neural tube defects has been explored. Animal studies have shown the ability of potato glycoalkaloids to induce spina bifida, anencephalopathy, embryo toxicity, and teratogenicity. However, studies in pregnant women whose fetuses exhibited neural tube defects had lower serum levels of glycoalkaloids compared with those of unaffected women. 3 , 28

Interactions
None well documented. 10 In experiments with rabbits, potato glycoalkaloids enhanced the neuromuscular blocking action of the anesthetic mivacurium. 3 The relevance of protease inhibitors found in potatoes is unclear. 25 , 27

Adverse Reactions
Case reports exist of anaphylaxis to cooked and raw potato. Allergic reactions include atopic dermatitis, contact dermatitis, rhinitis, and wheezing. 29 , 30

GI adverse effects (eg, abdominal pain, diarrhea, nausea, vomiting) have been reported and are generally associated with the consumption of blighted, greening, or sprouted tubers. 3 , 9 , 10

Toxicology
Acrylamide and glycoalkaloids are the two primary toxins associated with potatoes.

The highest dietary exposure to acrylamide in man comes from potatoes, cereals, and coffee. 12 Acrylamide presence in foods is a consequence of a heat-induced reaction between asparagine and reducing sugars, known as the Maillard reaction. The relative levels of these precursor chemicals, which themselves are dependent on the cultivar, growing conditions, harvest time, and storage, determine the final acrylamide concentration in the potato. 12 The heat intensity and cooking method are directly related to the formation of acrylamide. Boiled and baked potatoes generally have less acrylamide, whereas French fries and potato and tortilla chips have a higher acrylamide content. 11 , 12

A maximum acceptable exposure level has not been determined, and a direct association between dietary acrylamide and cancer has not been established, despite animal experiments demonstrating genotoxicity. 11 Epidemiological studies have found no association between acrylamide consumption and breast cancer in women, 31 , 32 and likewise no association between acrylamide intake and colorectal cancer in men. 33

Glycoalkaloids have been implicated as teratogens in animal studies. In vitro experiments have shown glycoalkaloids to inhibit human serum cholinesterases, and in case studies of toxicity related to potato consumption, effective plasma cholinesterase levels were low. 3 , 10 Symptoms associated with this effect include weak, rapid pulse; rapid and shallow breathing; delirium; and coma. Reports of death exist, especially associated with the consumption of blighted, greening, or sprouted tubers. More commonly, GI adverse effects are reported, including abdominal pain, diarrhea, nausea, and vomiting. 3 , 9 , 10 Interference by glycoalkaloids on the transport of calcium and sodium ions across cell membranes and the disruption of cholesterol-containing cell membranes has also been reported. 10 , 34

The glycoalkaloids solanine and chaconine are found in potatoes; however, the total glycoalkaloid content depends on the cultivar of the potato, as well as postharvesting exposure to light and heat and the processing methods for cooking and consumption. 3 Boiling potatoes reduces the glycoalkaloid content by approximately 3%, microwaving by 15%, and deep frying by amounts of up to 40%. Potato fries, chips, and flakes commercially available contain variable amounts of glycoalkaloids. Concern has been raised regarding frying processes, especially with regard to the frequency with which the oil used for frying is changed. The oil can become saturated with glycoalkaloids and diffusion back into the potato can occur, increasing the glycoalkaloid level. 3

Bibliography
1. Solanum tuberosum L. USDA, NRCS. 2008. The PLANTS Database ( http://plants.usda.gov , 10 November 2009). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.
2. Mabberley DJ. The Plant-Book . Cambridge, England: Cambridge University Press; 1987.
3. Friedman M. Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem . 2006;54(23):8655-8681.
4. Boyd E, Shimp LA, Hackney MJ. Home Remedies and the Black Elderly: A Reference Manual for Health Care Providers . Ann Arbor, MI: Institute of Gerontology and College of Pharmacy, University of Michigan; 1984.
5. Evans WC. Trease and Evans' Pharmacognosy . 13th ed. London: Bailliére Tindall; 1989.
6. Bethke PC, Jansky SH. The effects of boiling and leaching on the content of potassium and other minerals in potatoes. J Food Sci . 2008;73(5):H80-H85.
7. Hatzis CM, Bertsias GK, Linardakis M, Scott JM, Kafatos AG. Dietary and other lifestyle correlates of serum folate concentrations in a healthy adult population in Crete, Greece: a cross-sectional study. Nutr J . 2006;5:5.
8. Hellenäs KE, Nyman A, Slanina P, Lööf L, Gabrielsson J. Determination of potato glycoalkaloids and their aglycone in blood serum by high-performance liquid chromatography. Application to pharmacokinetic studies in humans. J Chromatogr . 1992;573(1):69-78.
9. Mensinga TT, Sips AJ, Rompelberg CJ, et al. Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regul Toxicol Pharmacol . 2005;41(1):66-72.
10. Korpan YI, Nazarenko EA, Skryshevskaya IV, Martelet C, Jaffrezic-Renault N, El'skaya AV. Potato glycoalkaloids: true safety or false sense of security? Trends Biotechnol . 2004;22(3):147-151.
11. Friedman M, Levin CE. Review of methods for the reduction of dietary content and toxicity of acrylamide. J Agric Food Chem . 2008;56(15):6113-6140.
12. Seal CJ, de Mul A, Eisenbrand G, et al. Risk-benefit considerations of mitigation measures on acrylamide content of foods—a case study on potatoes, cereals and coffee. Br J Nutr . 2008;99(suppl 2):S1-S46.
13. Soliman KM. Changes in concentration of pesticide residues in potatoes during washing and home preparation. Food Chem Toxicol . 2001;39(8):887-891.
14. Ylönen SK, Virtanen SM, Groop L; Botnia Research Group. The intake of potatoes and glucose metabolism in subjects at high risk for Type 2 diabetes. Diabet Med . 2007;24(9):1049-1050.
15. Halton TL, Willett WC, Liu S, Manson JE, Stampfer MJ, Hu FB. Potato and french fry consumption and risk of type 2 diabetes in women. Am J Clin Nutr . 2006;83(2):284-290.
16. Fernandes G, Velangi A, Wolever TM. Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc . 2005;105(4):557-562.
17. Buyken AE, Kroke A. Glycaemic index of potatoes: myth and reality from a European perspective. Br J Nutr . 2005;94(6):1035-1037.
18. Neithercott T. Virtue or vice? A closer look at five controversial foods. Diabetes Forecast . 2009;62(3):47-52.
19. Robert L, Narcy A, Rock E, Demigne C, Mazur A, Remesy C. Entire potato consumption improves lipid metabolism and antioxidant status in cholesterol-fed rat. Eur J Nutr . 2006;45(5):267-274.
20. Leo L, Leone A, Longo C, Lombardi DA, Raimo F, Zacheo G. Antioxidant compounds and antioxidant activity in “early potatoes”. J Agric Food Chem . 2008;56(11):4154-4163.
21. Liu YW, Han CH, Lee MH, Hsu FL, Hou WC. Patatin, the tuber storage protein of potato ( Solanum tuberosum L.), exhibits antioxidant activity in vitro. J Agric Food Chem . 2003;51(15):4389-4393.
22. Friedman M, Lee KR, Kim HJ, Lee IS, Kozukue N. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem . 2005;53(15):6162-6169.
23. Shih YW, Chen PS, Wu CH, Jeng YF, Wang CJ. Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells. J Agric Food Chem . 2007;55(26):11035-11043.
24. Chrubasik S, Boyko T, Filippov Y, Torda T. Further evidence on the effectiveness of potato juice in dyspeptic complaints. Phytomedicine . 2006;13(8):596-597.
25. Ruseler-van Embden JG, van Lieshout LM, Smits SA, van Kessel I, Laman JD. Potato tuber proteins efficiently inhibit human faecal proteolytic activity: implications for treatment of peri-anal dermatitis. Eur J Clin Invest . 2004;34(4):303-311.
26. Cesari A, Falcinelli AL, Mendieta JR, et al. Potato aspartic proteases (StAPs) exert cytotoxic activity on bovine and human spermatozoa. Fertil Steril . 2007;88(suppl 4):1248-1255.
27. Kim MH, Park SC, Kim JY, et al. Purification and characterization of a heat-stable serine protease inhibitor from the tubers of new potato variety “Golden Valley”. Biochem Biophys Res Commun . 2006;346(3):681-686.
28. Renwick JH, Claringbold WD, Earthy ME, Few JD, McLean AC. Neural-tube defects produced in Syrian hamsters by potato glycoalkaloids. Teratology . 1984;30(3):371-381.
29. Majamaa H, Seppala U, Palosuo T, Turjanmaa K, Kalkkinen N, Reunala T. Positive skin and oral challenge responses to potato and occurrence of immunoglobulin E antibodies to patatin (Sol t 1) in infants with atopic dermatitis. Pediatr Allergy Immunol . 2001;12(5):283-288.
30. Beausoleil JL, Spergel JM, Pawlowski NA. Anaphylaxis to raw potato. Ann Allergy Asthma Immunol . 2001;86(1):68-70.
31. Larsson SC, Akesson A, Wolk A. Long-term dietary acrylamide intake and breast cancer risk in a prospective cohort of Swedish women. Am J Epidemiol . 2009;169(3):376-381.
32. Wilson KM, Mucci LA, Cho E, Hunter DJ, Chen WY, Willett WC. Dietary acrylamide intake and risk of premenopausal breast cancer. Am J Epidemiol . 2009;169(8):954-961.
33. Larsson SC, Akesson A, Bergkvist L, Wolk A. Dietary acrylamide intake and risk of colorectal cancer in a prospective cohort of men. Eur J Cancer . 2009:45(4):513-516.
34. Mandimika T, Baykus H, Poortman J, Garza C, Kuiper H, Peijnenburg A. Induction of the cholesterol biosynthesis pathway in differentiated Caco-2 cells by the potato glycoalkaloid alpha-chaconine. Food Chem Toxicol . 2007;45(10):1918-1927.

Comments