Platycodon / Ballonplant

Platycodon grandiflorus of Ballonklokje is een goed winterharde vaste plant, die bladverliezend in de winter is.
Als deze plant eenmaal goed is aangeslagen kan hij veel verdragen. Het enige wat hij echt nodig heeft is zon en voldoende vochtige grond.
De bloeiende plant wordt, afhankelijk van de gekochte soort, 40 tot 60 cm hoog. De plant bloeit in de kleuren wit, roze en blauw in de maanden juni, juli en augustus. Hij staat leuk in grote groepen in de border en laat zich gemakkelijk combineren met andere planten. De plant vormt een mooie pol.

Standplaats Platycodon grandiflorus
De plant kan op een plek in hete zon staan, maar heeft dan wel voldoende water nodig. De plant heeft een humusrijke grond nodig, zodat vocht wordt vastgehouden, maar de grond moet wel waterdoorlatend zijn.

Ballonklokje
Zet de planten op een onderlinge afstand van 30 cm, uiteindelijk wordt het een mooi dicht tapijt. Zorg dat het Ballonklokje niet in de schaduw van bomen of struiken komt te staan, maar zet hem op een zonnige open plek in de tuin.

Bloei
Platycodon grandiflorus bloeit, afhankelijk van de soort, in de maanden juni, juli en augustus met witte, roze of blauwe bloemen. Haal de uitgebloeide bloemen eruit, om doorbloei te stimuleren. Voordat de bloemen opengaan hebben ze een ballonvorm, vandaar de naam Ballonklokje. De bloemen worden 5 tot 8 cm groot.
Blad en vermeerderen Platycodon grandiflorus
Het blad van deze winterharde vaste plant is grijsgroen van kleur.
De plant kan in het najaar worden gescheurd of gedeeld. Het duurt wel weer even voordat de plant zich weer hersteld heeft.



J Ethnopharmacol. 2015 Apr 22;164:147-61. doi: 10.1016/j.jep.2015.01.052. Epub 2015 Feb 7.
Platycodon grandiflorus - an ethnopharmacological, phytochemical and pharmacological review.
Zhang L1, Wang Y1, Yang D2, Zhang C2, Zhang N2, Li M3, Liu Y4.

ETHNOPHARMACOLOGICAL RELEVANCE:
Platycodon grandiflorus (Jacq.) A. DC., the sole species in genus Platycodon A. DC. (Campanulaceae) has a long history of use as a traditional herbal medicine for the treatments of cough, phlegm, sore throat, lung abscess, chest pain, dysuria, and dysentery. As a legal medicine and dietary supplement, it is also frequently used as an ingredient in health foods and vegetable dishes. The aim of this review is to provide up-to-date information on the botanical characterization and distribution, ethnopharmacology, phytochemistry, pharmacology, and toxicity of Platycodon grandiflorus based on literature published in recent years. It will build a foundation for further study of the mechanism of action and the development of better therapeutic agents and healthy products from Platycodon grandiflorus.
MATERIAL AND METHODS:
All of the available information on Platycodon grandiflorus was collected via electronic search (using PubMed, SciFinder Scholar, CNKI, TPL (www.theplantlist.org), Google Scholar, Baidu Scholar, and Web of Science).
RESULTS:
A comprehensive analysis of the literature obtained through the above-mentioned sources confirmed that ethno-medical uses of Platycodon grandiflorus have been recorded in China, Japan, Mongolia, and Korea for thousands of years. A phytochemical investigation revealed that this product contains steroidal saponins, flavonoids, polyacetylenes, sterols, phenolics, and other bioactive compounds. Crude extracts and pure compounds isolated from Platycodon grandiflorus exhibited significant anti-inflammatory and immunostimulatory effects. They also showed valuable bioactive effects, such as anti-tumor, anti-oxidant, anti-diabetic, anti-obesity, hepatoprotective and cardiovascular system effects, among others.
CONCLUSIONS:
In light of its long traditional use and the modern phytochemical and pharmacological studies summarized here, Platycodon grandiflorus has been demonstrated to show a strong potential for therapeutic and health-maintaining uses. Both the extracts and chemical components isolated from the plant showed a wide range of biological activities. Thus, more studies on the pharmacological mechanisms of its main active compounds (e.g., platycodin D, D2) need to be conducted. In addition, as one of the most popular traditional herbal medicines, clinical studies of the main therapeutic aspects, toxicity and adverse effects of Platycodon grandiflorus will also undoubtedly be the focus of future investigation.



Int J Mol Med. 2013 Jun;31(6):1357-66. doi: 10.3892/ijmm.2013.1330. Epub 2013 Apr 4.
Anti-inflammatory effects of saponins derived from the roots of Platycodon grandiflorus in lipopolysaccharide‑stimulated BV2 microglial cells.
Jang KJ1, Kim HK, Han MH, Oh YN, Yoon HM, Chung YH, Kim GY, Hwang HJ, Kim BW, Choi YH.
Radix platycodi is the root of Platycodon grandiflorus A. DC, which has been widely used as a food material and for the treatment of a number of chronic inflammatory diseases in traditional oriental medicine. In this study, the anti‑inflammatory effects of the saponins isolated from radix platycodi (PGS) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated BV2 murine microglial cells were examined. We also investigated the effects of PGS on LPS‑induced nuclear factor‑κB (NF-κB) activation and phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signaling pathways. Following stimulation with LPS, elevated nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokine production was detected in the BV2 microglial cells. However, PGS significantly inhibited the excessive production of NO, PGE2 and pro‑inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner without causing any cytotoxic effects. In addition, PGS suppressed NF-κB translocation and inhibited the LPS-induced phosphorylation of AKT and MAPKs. Our results indicate that the inhibitory effect of PGS on LPS-stimulated inflammatory response in BV2 microglial cells is associated with the suppression of NF-κB activation and the PI3K/AKT and MAPK signaling pathways. Therefore, these findings suggest that PGS may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory responses in activated microglial cells.



Food Chem Toxicol. 2009 Jun;47(6):1069-75. doi: 10.1016/j.fct.2009.01.041.
Inhibitory mechanism of saponins derived from roots of Platycodon grandiflorum on anaphylactic reaction and IgE-mediated allergic response in mast cells.
Han EH1, Park JH, Kim JY, Chung YC, Jeong HG.
The purpose of this study was to investigate the protective effects of saponins isolated from the root of Platycodi Radix (Changkil saponins: CKS) anti-allergic effects in mice and mast cells. Oral administration of CKS inhibited the dinitrophenyl (DNP)-IgE antibody-induced systemic PCA reaction in mice. CKS reduced the beta-hexosaminidase and histamine release from anti-DNP-IgE-sensitized RBL-2H3 cells. In addition, CKS inhibited the IgE antibody-induced increases in IL-4 and TNF-alphaproduction and expression in RBL-2H3 cells. In order to explore the inhibitory mechanism of CKS in PCA and mast cell degranulation, we examined the activation of intracellular signaling molecules. CKS suppressed DNP-IgE antibody-induced Syk phosphorylation. Further downstream, CKS also inhibited the phosphorylation of Akt and MAP kinases. Taken together, the in vivo/in vitro anti-allergic effects of CKS suggest possible therapeutic applications for this agent in allergic diseases through the inhibition of inflammatory cytokines and Syk-dependent signaling cascades.



Evaluation of the Spermicidal and Contraceptive Activity of Platycodin D, a Saponin from Platycodon grandiflorum
DOI: 10.1371/journal.pone.0082068
Zongliang Lu, Leiguang Wang, Rui Zhou, Yi Qiu, Liuna Yang, Chanyu Zhang, Min Cai, Mantian Mi, Hongxia Xu

Background The extract of Platycodon grandiflorum has been reported to have effective spermicidal activity. This study was designed to evaluate the spermicidal and contraceptive activity, as well as the safety, of Platycodin D (PD), a major saponin in Platycodon grandiflorum. Methods Using the computer-aided sperm analysis (CASA) test criteria, the sperm-immobilizing activity of PD was studied using highly motile human sperm. The sperm viability was assessed by fluorescent staining using SYBR-14 (living sperm) and propidium iodide (dead sperm). The sperm membrane integrity was assessed by evaluating the hypo-osmotic swelling (HOS) and examinations by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The in vivo contraceptive efficacy was evaluated in rats using post-intrauterine PD application. The comet assay was employed to determine whether PD caused DNA damage in the sperm. Vaginal biopsies were also performed to determine whether the PD gel induced vaginal inflammation. Results A dose-dependent effect of PD on the sperm motility and viability was observed. The maximum spermicidal effect was observed with a 0.25 mM concentration of PD. More than 70% of the PD-treated sperm lost their HOS responsiveness at a concentration of 0.20 mM PD, indicating that PD caused injury to the sperm plasma membrane. TEM and SEM revealed significant damage to both the head and tail membranes of the sperm. PD decreased the fertility to zero in rats, was non-DNA damaging and was not harmful to the vaginal tissue in the rats. Conclusion PD has significant spermicidal activity that should be explored in further studies.

References

[1]   World Health Organization (1997) Abortion: A Tabulation of Available Data on the Frequency and Mortality of Unsafe Abortion. 3rd ed. Geneva, Switzerland: World Health Organization.
[2]   Morroni C, Tibazarwa K, Myer L (2006) Combined condom and contraceptive use among South African women. S Afr Med J 96: 620, 16909186.
[3]   Stephenson J (2000) Widely used spermicide may increase, not decrease, risk of HIV transmission. JAMA 284: 949. doi:10.1001/jama.284.8.949. PubMed: 10944622.
[4]   Fichorova RN, Tucker LD, Anderson DJ (2001) The molecular basis of nonoxynol-9-induced vaginal inflammation and its possible relevance to human immunodeficiency virus type 1 transmission. J Infect Dis 184: 418-428. doi:10.1086/322047. PubMed: 11471099.
[5]   Primorac M, Sekulovi? D, Antoni? S (1985) In vitro determination of the spermicidal activity of plant saponins. Pharmazie 40: 585. PubMed: 4080814.
[6]   Lakshmi V, Saxena A, Mishra SK, Raghubir R, Srivastava MN et al. (2008) Spermicidal Activity of Bivittoside D from Bohadschia vitiensis. Arch Med Res 39: 631-638. doi:10.1016/j.arcmed.2008.06.007. PubMed: 18760190.
[7]   Paul D, Bera S, Jana D, Maiti R, Ghosh D (2006) In vitro determination of the contraceptive spermicidal activity of a composite extract of Achyranthes aspera and Stephania hernandifoliaon on human semen. Contraception 73: 284-288. doi:10.1016/j.contraception.2005.07.014. PubMed: 16472572.
[8]   Saha P, Majumdar S, Pal D, Pal BC, Kabir SN (2010) Evaluation of spermicidal activity of MI-saponin A. Reprod Sci 17: 454-464. doi:10.1177/1933719110361378. PubMed: 20220105.
[9]   Das N, Chandran P, Chakraborty S (2011) Potent spermicidal effect of oleanolic acid 3-beta-D-glucuronide, an active principle isolated from the plant Sesbania sesban Merrill. Contraception 83: 167-175. doi:10.1016/j.contraception.2010.05.009. PubMed: 21237343.
[10]   Souad K, Ali S, Mounir A, Mounir TM (2007) Spermicidal activity of extract from Cestrum parqui. Contraception 75: 152-156. doi:10.1016/j.contraception.2006.10.006. PubMed: 17241846.
[11]   Paul S, Kang SC (2011) In vitro determination of the contraceptive spermicidal activity of essential oil of Trachyspermum ammi(L. ) Sprague ex turrill fruits. New. Biotechnol 28: 684-690.
[12]   Qiu Y, Wang LG, Jia YF, Yang DT, Zhang MH et al. (2011) Effects of the crude extract of Polygala tenuifolia Willd on human sperm in vitro. J Zhejiang Univ Sci B 6: 448-454. PubMed: 21634037.
[13]   Farnsworth NR, Waller DP (1982) Current status of plant products reported to inhibit sperm. In: GI Zatuchni. Research frontiers in fertility regulation 2: 1-16.
[14]   Pakrashi A, Ray H, Pal BC, Mahato SB (1991) Sperm immobilizing effect of triterpene saponins from Acacia auriculiformis. Contraception 5: 475-483. PubMed: 1914460.
[15]   Shin CY, Lee WJ, Lee EB, Choi EY, Ko KH (2002) Platycodin D and D3 increase airway mucin release in vivo and in vitro in rats and hamsters. Planta Med 68: 221-225. doi:10.1055/s-2002-23130. PubMed: 11914958.
[16]   Ahn KS, Noh EJ, Zhao HL, Jung SH, Kang SS et al. (2005) Inhibition of inducible nitric oxide synthase and cyclooxygenase II by Platycodon grandiflorum saponins via suppression of nuclear factor-κB activation in RAW 264.7 cells. Life Sci 76: 2315-2328. doi:10.1016/j.lfs.2004.10.042. PubMed: 15748625.
[17]   Kim MO, Moon DO, Choi YH, Lee JD, Kim ND et al. (2008) Platycodin D induces mitotic arrest in vitro, leading to endoreduplication, inhibition of proliferation and apoptosis in leukemia cells. Int J Cancer 122: 2674-2681. doi:10.1002/ijc.23442. PubMed: 18351645.
[18]   Qiu Y, Wang L, Jia Y, Yang D (2010) Mechanism for sperm immobilization activity of exact from Platycodon grandiflorum in vitro. Zhonghua Yi Xue Za Zhi. 44: 3107-3111 ( in Chinese. ).
[19]   Qiu Y,Wang L,Song X, Qia Y, Yang D et al. (2008) Study on the spermicidal effect of the extracted fluid of Platycodon Grandiflorum in vitro. Zhongguo Ji Hua Sheng Yu Xue za Zhi. 4: 222-224 ( in Chinese).
[20]   Mkrtchyan A, Panosyan V, Panossian A, Wikman G, Wagner H (2005) A phase I clinical study of Andrographis paniculata fixed combination Kan Jang versus ginseng and valerian on the semen quality of healthy male subjects. Phytomedicine 12: 403-409. doi:10.1016/j.phymed.2004.10.004. PubMed: 16008115.
[21]   World Health Organization (1999) Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. New York 7 Cambridge University Press.
[22]   Jeyendran RS, Van der Ven HH, Perez-Pelaez M, Crabo BG, Zaneveld LJ (1984) Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J Reprod Fertil 70: 219-228. doi:10.1530/jrf.0.0700219. PubMed: 6694140.
[23]   Fujita T, Miyoshi M, Tokunaga J (1970) Scanning and transmission electron microscopy of human ejaculate spermatozoa with special reference to their abnormal forms. Z Zellforsch Mikrosk Anat 105: 483-497. doi:10.1007/BF00335423. PubMed: 4919107.
[24]   Simon Luke, Carrell Douglas T (2013) Chapter 13, Sperm DNA Damage Measured by Comet Assay. Spermatogenesis: Methods and Protocols. Humana Press. Volume 927: 137-146.
[25]   Singh KK, Parmar S, Tatke PA (2012) Contraceptive efficacy and safety of HerbOshield? vaginal gel in rats. Contraception 85: 122-127. doi:10.1016/j.contraception.2011.04.013. PubMed: 22067802.
[26]   The national standard of the people's Republic of China. (2005) Biological evaluation of medical devices - Part 10: Tests for irritation and skin sensitization. GB/T 16886. 10-2005 /ISO 10993-10, 2002 (in Chinese).
[27]   Chaudhury K, Bhattacharyya AK, Guha SK (2004) Studies on the membrane integrity of human sperm treated with a new injectable male contraceptive. Hum Reprod 19: 1826-1830. doi:10.1093/humrep/deh332. PubMed: 15192063.
[28]   Garner DL, Johnson LA (1995) Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol Reprod 53: 276-284. doi:10.1095/biolreprod53.2.276. PubMed: 7492679.
[29]   Pal D, Chakraborty P, Ray HN, Pal BC, Mitra D et al. (2009) Acaciaside-B-enriched fraction of Acacia auriculiformis is a prospective spermicide with no mutagenic property. Reproduction 138: 453-462. doi:10.1530/REP-09-0034. PubMed: 19703946.
[30]   Armah CN, Mackie AR, Roy C, Price K, Osbourn AE et al. (1999) The membrane- permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophys J 76(1 Pt 1): 281-290. PubMed: 9876141.
[31]   Lange Y, Ye J, Steck TL (2005) Activation of membrane cholesterol by displacement from phospholipids. J Biol Chem 280: 36126-36131. doi:10.1074/jbc.M507149200. PubMed: 16129675.
[32]   Gee JM, Johnson IT (1988) Interactions between hemolytic saponins, bile salts and small intestinal mucosa in the rat. J Nutr 118: 1391-1397. PubMed: 3193256.
[33]   Story JA, LePage SL, Petro MS, West LG, Cassidy MM et al. (1984) Interactions of alfalfa plant and sprout saponins with cholesterol in vitro and in cholesterol-fed rats. Am J Clin Nutr 39: 917-929. PubMed: 6720621.
[34]   Vis EH, Geerse GJ, Klaassens ES, van Boekel MA, Alink GM (2005) Possible mechanisms behind the differential effects of soy protein and casein feedings on colon cancer biomarkers in the rat. Nutr Cancer 51: 37-44. doi:10.1207/s15327914nc5101_6. PubMed: 15749628.
[35]   Niruthisard SR, Roddy E, Chutivongse S (1991) The effects of frequent nonoxynol-9 use on the vaginal and cervical mucosa. Sex Transm Dis 18: 176-179. doi:10.1097/00007435-199107000-00010. PubMed: 1658953.
[36]   D'Cruz OJ, Uckun FM (2001) Gel-microemulsions as vaginal spermicides and intravaginal drug delivery vehicles. Contraception 64: 113-123. doi:10.1016/S0010-7824(01)00233-5. PubMed: 11704088.
[37]   Kumar S, Biswas S, Mandal D, Roy HN, Chakraborty S et al. (2007) Chenopodium album seed extract: a potent sperm immobilizing agent both in vitro and in vivo. Contraception 75: 71-78. doi:10.1016/j.contraception.2006.07.015. PubMed: 17161128.
[38]   Lambert PC, Peters C, Centurión SA (2004) Mutagenicity of vaginal spermicides containing nonoxynol-9 in a bacterial assay. J Reprod Med 49: 817-824. PubMed: 15568406.
[39]   Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W (1996) A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod 2: 613-619. doi:10.1093/molehr/2.8.613. PubMed: 9239674.
[40]   Singh NP, Stephens RE (1998) X-ray induced DNA double-strand breaks in human sperm. Mutagenesis 13: 75-79. doi:10.1093/mutage/13.1.75. PubMed: 9491398.
Comments