Dianthus superbus / Prachtanjer

Dianthus superbus fructus suppresses airway inflammation by downregulating of inducible nitric oxide synthase in an ovalbumin-induced murine model of asthma
In-Sik Shin12, Mee-Young Lee1, Hyekyung Ha1, Woo-Young Jeon1, Chang-Seob Seo1 and Hyeun-Kyoo Shin1*
Author Affiliations
1 Basic Herbal Medicine Research Group, Korea Institute of Oriental Medicine, 483 Expo-ro, Yusung-gu, Daejeon 305-811, Republic of Korea
2 College of Veterinary Medicine, Chonnam National University, Gwangju, 500-757, Republic of Kore
Journal of Inflammation 2012, 9:41  doi:10.1186/1476-9255-9-41

Dianthus superbus has long been used as a herbal medicine in Asia and as an anti-inflammatory agent. In this study, we evaluated the anti-inflammatory effects of Dianthus superbus fructus ethanolic extract (DSE) on Th2-type cytokines, eosinophil infiltration, and other factors in an ovalbumin (OVA)-induced murine asthma model. To study the possible mechanism of the anti-inflammatory effect of DSE, we also evaluated the expression of inducible nitric oxide synthase (iNOS) in the respiratory tract.

Mice were sensitized on days 0 and 14 by intraperitoneal injection of OVA. On days 21, 22 and 23 after initial sensitization, mice received an airway challenge with OVA for 1 h using an ultrasonic nebulizer. DSE was applied 1 h prior to OVA challenge. Mice were administered DSE orally at doses of 100 mg/kg or 200 mg/kg once daily from day 18 to 23. Bronchoalveolar lavage fluid (BALF) was collected 48 h after the final OVA challenge. Levels of interleukin (IL)-4, IL-13 and eotaxin in BALF were measured using enzyme-linked immunosorbent assays (ELISAs). Lung tissue sections were stained with hematoxylin and eosin for assessment of cell infiltration and mucus production with periodic acid shift staining, in conjunction with ELISA and western blot analyses for iNOS expression.

DSE significantly reduced the levels of IL-4, IL-13, eotaxin, and immunoglobulin (Ig) E, number of inflammatory cells in BALF, and inflammatory cell infiltration and mucus production in the respiratory tract. DSE also attenuated the overexpression of iNOS protein induced by OVA challenge.

Our results suggest that DSE effectively protects against allergic airway inflammation by downregulating of iNOS expression and that DSE has potential as a therapeutic agent for allergic asthma.

De prachtanjer (Dianthus superbus) is een vrij kort levende vaste plant die behoort tot de anjerfamilie (Caryophyllaceae). De prachtanjer komt van nature voor in Eurazië en groeit bijvoorbeeld nog in Duitsland. In België is de plant zeer zeldzaam.
De plant wordt 20-45 cm hoog en de stengel is dicht bezet met korte stekelachtige haartjes. De plant is zodeachtig en heeft smalle, lijnvormige bladeren. De prachtanjer bloeide in Nederland van juni tot september met roze of paarsachtige, soms witte, sterk geurende bloemen. De lang gesteelde bloemen staan in een wijdvertakt, meertakkig bijscherm.
De soort is volgens de Nederlandse Rode Lijst van planten niet meer in dat land aanwezig. De prachtanjer kwam er vroeger voor op zandruggen in veenachtig hooigrasland.

Traditional Uses: The taste is sweet and sour, and the potency is cool. It is used for the following: aids in delivery of baby and placenta, dries out lymph disorders, for uterine diseases and inducing contractions. Also used as a diuretic, hemostatic, and anti-inflammatory. An overdose causes bleeding. It is an ingredient of the following traditional prescriptions: Bashaga-7, Digda-4, Ruda-6, and Zandan-18 [5–9].

Chemical constituents: Herb contains pectins [10], saponins: dianosides G, H and I, azukisaponin [11], dianthussaponin A, B, C and D [12], cyclopeptides: dianthins A-F, [13,14], longicalycinin A [15], alkaloids, pyrocatechin tannins, flavonoids: orientin, homoorientin [16], 4-methoxydianthramide B [13]. 
Flowers contains saponins, flavonoids [17]. Qualitive and quantitative assays: Flavonoids in the plant are identified by cyanidin reaction. Total flavonoid content is determined by spectrophotometry at 420 nm and calculated using the comparision curve of rutin [18].

Qualitive and quantitative standards: Loss on drying, not more than 13.0%. Ash, not more than 2.0%. Organic matter, not more than 2.0%, and mineral matter, not more than 0.5%. Total flavonoid content, not less than 1.2% [18].

Bioactivities: anti-DPPH free radical, 15-lipoxygenase [10], anticonvulsant [17].48 — 

1. Olziikhutag, N. (Ed). (1983). Latin-Mongolian-Russian Dictionary of Vascular Plants of Mongolia (p. 111). Ulaanbaatar: Press of Mongolian Academy of Sciences.
2. Gubanov, I.А. (1996). Conspectus on Mongolian Flora (vascular plants) (p. 44). Moscow: Valang Press.
3. Malishev, L.I., and Peshkova, G.A. (1979). Flora of Central Siberia (Vol. 2, p. 333). Novosibirsk: Science Printing.
4. Sanchir, Ch., Batkhuu, J., Boldsaikhan, B., and Komatsu, K. (2003). Illustrated Guide of Mongolian Useful Plants. (Vol. 1, p.83). Ulaanbaatar: Admon Printing.
5. Ligaa, U., Davaasuren, B., and Ninjil, N. (2005). Medicinal Plants of Mongolia Used in Western and Eastern Medicine. (p. 93). Ulaanbaatar: JCK Printing.
6. Yuthok Yonten Gonpo., Four Medical Tantras, VIII-IXth century.
7. Danzanpuntsag., Crystal rosary. XVIIIth century.
8. Boldsaikhan, B. (2004). Encyclopedia of Mongolian Medicinal Plants (p. 248). Ulaanbaatar: Mongolian University of Science and Technology.
9. Khurelchuluun, B., and Batchimeg, U. (2006). Illustrated Guide of Medicinal Plant Raw Materials of Mongolia. (p. 17). Ulaanbaatar: Erkhes Printing.
10. Gyrdagva, N. (2004). Chemical and pharmacological investigation of Dianthus superbus, its usage in veterinary practice. (p. 110). A thesis submitted for the degree of Doctor of Philosophy in Veterinary Medicine. Ulaanbaatar: Agriculture University of Mongolia.
11. Oshima, Y., Ohsawa, T., and Hikino, H. (1984). Structures of dianosides G, H and I, triterpenoid saponins of Dianthus superbus var. longicalycinus herbs. Planta Med. 50, 254.
12. Shimizu, M. and Takemoto, T. (1967). Saponins of Dianthus superbus var longicalycinus., Yakugaku Zasshi. 87, 250.
13. Hsieh, P.W., Chang, F.R., Wu, C.C., Li, C.M., Wu, K.Y., Chen, S.L., Yen, H.F., and Wu, Y.C. (2005). Longicalycinin A, a new cytotoxic cyclic peptide from Dianthus superbus var. longicalycinus (Maxim.) Will. Chem. Pharm. Bull. 53, 336.
14. Wang, Y.-C., Tan, N.-H.., Zhou, J., and Wu, H.-M. (1998). Cyclopeptides from Dianthus superbus. Phytochemistry 49, 1453.
15. Hsieh, P.W., Chang, F.R., Wu, C.C., Wu, K.Y., Li, C.M., Chen, S.L., and Wu, Y.C. (2004). New cytotoxic cyclic peptides and dianthramide from Dianthus superbus. J. Nat. Prod. 67, 1522.
16. Seraya, L.M., Birke, K., Chimenko, S.V., and Boguslavskaya, L.I. (1978). Flavonoids from Dianthus superbus. Khim. Prir. Soedin. 802.
17. Fedorov, A.A. et al. (1985). Plants Review of USSR: Family Magnoliaceae-Limoniaceae. (p. 188). Leningrad: Science Printing.
18. Oyuungerel, Z. (1978). Herb of Dianthus superbus, Mongolian National Standard 2606–78.