Bergenia crassifolia / Schoenlappersplant

Sibirischer Tee , Vergessene Heil- und Teepflanze der Mongolei

Es sind die schwarzen, schon abgestorbenen Blätter, die man nach einem langen Winter unterm Schnee an der Pflanze findet, aus denen der leckere, berühmte Altai-Tee bereitet wird. Diese alten Blätter gelten als besonders wertvoll, sie enthalten weniger Gerbstoffe als die grünen Blätter. Der Tee heisst auch Chagirsky. Der Name kommt von der kleinen Stadt Chagir aus dem Altai. Er wird sowohl heiß als auch kalt getrunken, typisch ist die rotbraune Farbe. Das Getränk gilt als exzellenter Durstlöscher, soll stärkend wirken und die Müdigkeit vertreiben. 

Sibirischer Tee ist nur einer von vielen Namen, und diese überaus robuste Staude ist auch verbreitet in der Mongolei, Nordwestchina, im Baikal-Gebiet und eben im Altai. Sie wächst dort in schattigen, feuchten Wäldern in Höhenlagen bis zu 2.000 Metern. Sibirischer Tee wird heutzutage in Sibirien, Polen und der Altai-Region angebaut.

Als immergrüne auch schön blühende Staude ist die Bergenie in vielen Zuchtformen in deutsche Gärten gekommen. Allein die Art Bergenia crassifolia wird zusätzlich zu ihrem Zierwert im Garten auch als Tee und medizinisch genutzt. Diese Wildform ist genauso einfach wie die Gartenbergenie zu ziehen. Die schönen tiefrosaroten Blüten erscheinen von März bis Mai. Sie lassen sich gut für Blumengestecke trocknen. Verwendet werden also einerseits die schwarzen, abgestorbenen Blätter als Haustee und allgemeines Kräftigungsmittel, andererseits aber auch die starken Rhizome. Diese stehen bei der medizinischen Anwendung mehr im Vordergrund. Sowohl Blätter als auch Rhizome gelten als Anti-Stress-Mittel. Besonders die Rhizome gelten als gefäßerweiternd wirksam und stärken die Kapillaren. Auch in der Antike galt der Tee schon als Stärkungsmittel für die Manneskraft. In Tibet heißt es auch „Super-Yang“. Das erklärt auch, warum sich hauptsächlich Männer für diesen Tee interessieren.

Hauptinhaltsstoffe sind Gerbstoffe, Polyphenole und Arbutin. Letzteres ist auch der Hauptwirkstoff in Bärentraubenblättern, deswegen wohl auch die Anwendung bei Harnwegsinfekten. Sonstige Wirkungen: Entzündungshemmend, appetithemmend, antibakteriell, adstringierend, blutdrucksenkend, soll die Blutplättchen vor Verklumpung schützen. Äußerlich als Kompresse zur Unterstützung der Wundheilung. Blätter wirken auch als Adaptogen. Volkstümliche Anwendung: In der russischen Medizin bei Diarrhoe und anderen Darmerkrankungen. Gegen Fieber, Tuberkulose, Lungenentzündung und Rheuma, als Färbemittel, bei Erkältungen, Kopfschmerzen, Gingivitis, gegen zu starke Regelblutungen.



Although in Romania Bergenia crassifolia is not considered to be a medicinal plant, in Russian Federation preparations of this plant are used as astringent, anti-inflammatory (probably due to bergenan, a pectin from its structure), bactericidal and haemostatic remedies. In the folk medicine
is used for wound healing, disinfecting, tonic and general strengthening purposes (Shilova et al., 2006). It has been demonstrated that bergenan from leaves of Bergenia crassifolia, which belong to galacturonans, shows the immunostimulating activity in vivo and the phagocytic activity in
vitro (Golovchenko et al., 2006). Khazanov et al. (2000) demonstrated an important cerebroprotective activity of leaves extract in hypoxia.

The content of arbutin in vegetative and generative organs of the plant varies in wide limits, from 27.9% in roots to 19.92% and 7.5% in leaves being dependent on the method of raw material drying. The plant age is also an important factor affecting arbutin content: the first-year leaves contain 8% arbutin and old leaves contain only 3.3% arbutin (Lubsandorzhieva et al., 1999). 

Golovcenko, V. V., O. A. Bushneva, R. G. Ovodova, A. S. Shashkov, A.O. Chizov and S. Yu. Ovodov (2007). Structural study of bergenan, a pectin from Bergenia crassifolia, Russian Journal of Bioorganic Chemistry. 33(1):47-56. Khazanov, V. A. and N. B. Smirnova (2000). Kinetic characteristics of the energy production system in rat brain under conditions of posthypoxic encefalopathy and its correction with Bergeniae crassifoliae extracts. Bulletin of experimental Biology and Medicine, Pharacology and Toxicology. (1):63-65. Lubsandorzhieva, P. B., B. S. Zhighitov, T. D. Dargaeva, Zh. G. Bazarova and L. A. Nagaslaeva (2000). Chromatospectrophotometric Determination of Arbutin in The Leaves of Bergenia crassifolia (L.) Fritsch., Pharmaceutical Chemistry Journal. 34(5):38-40. Parejo, I., F. Viladomat, J. Bastida and C. Codina (2001). A single extraction step in the quantitative analysis of arbutin in bearberry (Arctostaphyllos uva-ursi) leaves by highperformance liquid chromatography. Phytochem. Anal. Sept.- Oct. 12(5):336-339. Popov, S. V., R. G. Ovodova, G. Yu. Popova, I. R. Nikitina and Yu. S. Ovodov (2007). Inhibition of neutrophil adhesion by pectic galacturonans. Russian Journal of Bioorganic Chemistry. 33(1):175-180. Shilova, I. V., S. I. Pisareva and E. A. Krasnov (2006). Antioxidant properties of Bergenia crassifolia extrac, Pharmaceutical Chemistry Journal. 40(11):620-623.



Bergenia crassifolia (L.) Fritsch (Saxifragaceae), commonly known as badan, Siberian tea, Mongolian tea, leather bergenia, or elephant׳s ears, is an evergreen perennial plant with rhizomes up to 1 meter long, 10–50 cm long leather-like large leaves, and pink flowers.

Infusions of Bergenia rhizomes have been used in Russian traditional medicine for the treatment of colds, gastritis, enterocolitis, headache, diarrhea, and fever ( Gammerman et al., 1984). In Russian ethnomedicine, the leaves are widely used as a beverage. Buryats and Mongols are known to have used B. crassifolia leaves to make tea. However, in Altai, old blackened wintered leaves, known as chagirsky tea, are preferred for this purpose because the green leaves contain higher amounts of tannins ( Vereschagin et al. 1959). In officinal medicine, the rhizomes are claimed as haemostatic, astringent, anti-inflammatory, and antimicrobial agents. Infusions are recommended in gynecology for excessive menstruation, bleeding after abortions, and cervical erosion treatment (Turova, Sapozhnikova, 1989). The rhizome is claimed to strengthen capillary walls, to exhibit local vasodilatation activity, to decrease arterial blood pressure and to increase heart rate (Sokolov, 2000). Bergenia rhizomes are used to treat the following oral diseases: periodontal disease, stomatitis, gingivitis, and bleeding gums ( Lukomsky, 1955). Bergenia crassifolia appears to meet the criteria required for consideration as an adaptogen ( Suslov et al., 2002 and Panossian, 2003).

The rhizomes of B. crassifolia are safe at the daily dose of 50–100 mL of decoction (10 g in 200 mL of water) and are available in pharmacies without a prescription (Sokolov, 2000). Infusions of both the black and fermented leaves of B. crassifolia (10 g in 100 mL of water) have been found to be safe in mice after 7 days of continuous per oral administration at the dose of 9 mL/kg (Shikov et al., 2010b). At a single oral dose (50 mg/kg per day) of dry extracts of black and green leaves, no signs of toxicity were observed in rats after one week (Shikov et al., 2012). Bergenin and norbergenin, the main coumarins of Bergenia, were found to be safe up to 2,000 mg/kg weight in mice after per oral acute administration, and no sign of mortality or change in behavioral pattern was observed (Nazir et al., 2007). The bergenan - pectic polysaccharide from B. crassifolia green leaves was found to be nontoxic and failed to influence the body weight or the length and weight of the intestine ( Popov et al., 2005). The LD50 for sulfated pectin derivatives of B. crassifolia after a single intraperitoneal injection was more than 1,000 mg/kg (Vityazev et al., 2012). Table 6 summarizes the pharmacological studies that have been undertaken on B. crassifolia and that are reported in the literature.

http://www.sciencedirect.com/science/article/pii/S0378874114002827#t0030

In the available literature, no clinical data for B. crassifolia were found. Rhizomes of B. crassifolia are recommended for internal administration at the dose of 1–2 tablespoons of the decoction (10 g in 200 mL of water) taken 3 times per day as an astringent, a haemostatic, or an anti-inflammatory agent ( Sokolov, 2000). Claims of antimicrobial activity are not supported by antimicrobial assays, which only show activity at very high concentrations. Anti-inflammatory activity might be associated with high concentrations of polyphenols, polysaccharides, and α-bisabololoxide B ( Popov et al., 2005, Chernetsova et al., 2012 and Chernetsova et al., 2014).

It is interesting that the black leaves and rhizomes have been used in traditional medicine, but the use of rhizomes is only referred to in the Pharmacopoeia of the USSR. The safety and efficacy of B. crassifolia (both leaves and rhizomes) are confirmed by their long period of traditional application. However, publications regarding their chemistry, pharmacological effects and safety remain fragmentary. This plant should be an interesting subject for further investigations, especially with respect to its adaptogenic properties.

A.N. Shikov, O.N. Pozharitskaya, M.N. Makarova, H.J.D. Dorman, V.G. Makarov, R. Hiltunen, B. Galambosi
Adaptogenic effect of black and fermented leaves of Bergenia crassifolia L. in mice Journal of Functional Foods, 2 (2010), pp. 71–76
The adaptogenic effect of Bergenia crassifolia black and fermented leaves was examined based on the forced swimming capacity and the change of biochemical parameters in mice. The treatment groups were orally administered infusions of black and fermented leaves of 3 populations of B. crassifolia, while the control group received distilled water for 7 days. Infusions from black leaves of B. crassifolia insignificantly enhanced the maximum swimming capacity of mice by increasing fat utilization, and by delaying the accumulation of plasma lactate while infusions from fermented leaves of B. crassifolia significantly enhanced the maximum swimming capacity of mice without change of the body weight by increasing glucose utilization and decreasing lactate level compared to the control group.

L. Kokoska, Z. Polesny, V. Rada, A. Nepovim, T. Vanek
Screening of some Siberian medicinal plants for antimicrobial activity
Journal of Ethnopharmacology, 82 (2002), pp. 51–53
The antimicrobial activity of crude ethanolic extracts of 16 Siberian medicinal plants was tested against five species of microorganisms: Bacillus cereus, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Of the 16 plants tested, 12 showed antimicrobial activity against one or more species of microorganisms. The most active antimicrobial plants were Bergenia crassifolia, Chelidonium majus, Rhaponticum carthamoides, Sanguisorba officinalis, and Tussilago farfara.

. Nazir, S. Koul, M.A. Qurishi, S.C. Taneja, S.F. Ahmad, S. Bani, G.N. Qazi
Immunomodulatory effect of bergenin and norbergenin against adjuvantinduced arthritis - a flow cytometric study
Journal of Ethnopharmacology, 112 (2007), pp. 401–405
Bergenin (1), a C-glycoside of 4-O-methyl gallic acid, isolated from rhizomes of Bergenia stracheyi (Saxifragaceae) and its O-demethylated derivative norbergenin (2), prepared from 1, are reported to show anti-arthritic activity through possible modulation of Th1/Th2 cytokine balance. Flow cytometric study showed that the oral administration of 1 and 2 at doses of 5, 10, 20, 40 and 80 mg/kg per oral dose inhibit the production of proinflammatory Th1 cytokines (IL-2, IFN-γ and TNF-α) while as potentiate anti-inflammatory Th2 cytokines (IL-4 and IL-5) in the peripheral blood of adjuvant-induced arthritic balb/c mice. This shows the potential Th1/Th2 cytokine balancing activity of 1 and 2 which is strongly correlated with their anti-arthritic activity. At similar dose levels, the effect of 2 was found to be more than that of 1. The oral LD0 for 1 and 2 was more than 2000 mg/kg body weight of the mice.

A.A. Churin, N.V. Masnaya, E.Yu. Sherstoboev, N.I. Suslov
Effect of Bergenia crassifolia extract on specific immune response parameters under extremal conditions
Eksperimental׳naya i Klinicheskaya Farmakologiya, 68 (5) (2005), pp. 51–54
The influence of a dry extract from Bergenia crassifolia (Fritsch) on the specific immune response parameters was studied under extremal conditions of model immunodepressive states induced by immobilization stress or cyclophosphamide injections. The drug produced normalizing effect on the content of antibody-forming cells in the spleen of experimental mice under the conditions of humoral response stimulation by antigen and in both immunodepression models. The bergenia extract decreases expression of inflammatory processes under delayed hypersensitivity reaction conditions, by preventing the accumulation of T-lymphocytes in the inflammation focus and reducing the ability of cells to produce anti-inflammatory cytokines.

O.N. Pozharitskaya, S.A. Ivanova, A.N. Shikov, V.G. Makarov, B. Galambosi
Separation and evaluation of free radical-scavenging activity of phenol components of green, brown, and black leaves of Bergenia crassifolia by using HPTLC-DPPH method
Journal of Separation Science, 30 (2007), pp. 2447–2451
A new procedure has been developed to separate and quantify the free radical-scavenging activity of individual compounds from green, brown, and black leaves of Bergenia crassifolia based on the combination of high performance TLC (HPTLC) with a diode array detector (DAD) and postchromatographic 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH*) derivatization. Free gallic and ellagic acids, arbutin, hydroquinone, and bergenin in the B, crassifolia leaves' extracts were separated by HPTLC and identified. All compounds of the extract excluding bergenin were capable of scavenging DPPH* radicals. From the estimated ID50 values, it can be seen that the increasing order of activity was gallic acid > arbutin > ellagic acid > hydroquinone > ascorbic acid. The antiradical activity of leaves of B. crassifolia is probably associated to the presence of phenol. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

V.A. Khazanov, N.B. Smirnova
Kinetic characteristics of the energy production system in rat brain under conditions of posthypoxic encephalopathy and its correction with Bergeniae crassifoliae extracts
Bulletin of Experimental Biology and Medicine, 1 (2000), pp. 63–65
Posthypoxic encephalopathy is characterized by inhibition of the succinate oxidase stage in cerebral energy production. When administered to rats exposed to hypoxia, Bergeniae crassifolia extract reduced mortality and restricted the inhibition of rapid metabolic cluster reactions.

S.V. Popov, G.Y. Popova, S.Y. Nikolaeva, V.V. Golovchenko, R.G. Ovodova
Immunostimulating activity of pectic polysaccharide from Bergenia crassifolia (L) Fritsch
Phytotherapy Research, 19 (2005), pp. 1052–1056
The pectic polysaccharide named bergenan BC was obtained using extraction of the green leaves of Siberian tea Bergenia crassifolia (L.) Fritsch. by an aqueous ammonium oxalate. The polysaccharide obtained was proved to comprise mainly D-galacturonic acid, galactose, rhamnose, arabinose and glucose residues and appeared to be pectin. Delayed type hypersensitivity (DTH) reaction to aggregated ovalbumin (agOVA) was found to increase in mice that received bergenan solution (2 mg/mL) for 3 weeks. Bergenan BC was observed to enhance the uptake capacity of human neutrophils at a concentration 100 μg/mL and to stimulate the generation of oxygen radicals by mouse peritoneal macrophages in vitro. Bergenan BC was found to increase the spontaneous adhesion of peritoneal leukocytes and failed to influence adhesion stimulated by PMA or adhesion of peritoneal leukocytes incubated in the presence of 5 mM EDTA. Bergenan failed to show cytotoxic action. The viability of peritoneal leukocytes was estimated to be equal to 91% ± 8% and 90% ± 7%% in the control and in the pectin solution at a concentration of 1 mg/mL. Thus, bergenan was shown to possess immunostimulating activity in relation to DTH response in vivo and phagocytic activity in vitro. 
Comments