Allium ursinum / Daslook

Daslook, Allium ursinum L., is een wettelijk beschermde plant uit de de Lookfamilie. Het is een vrij zeldzame soort in België en Nederland, maar als de soort voorkomt kan ze grote oppervlakken bedekken. Ze heeft een sterke uiengeur, die nog toeneemt als de soort in de zomer begint af te sterven.

De aanduiding ursinum (= van de beren, Ursus = beer) is mogelijk ontstaan door het geloof dat beren na hun winterslaap zich eerst aan deze plant te goed deden. Dit is er ook de oorzaak dat de plant af en toe ook berenlook wordt genoemd. De Duitse benaming Bärlauch duidt daarop. De naam Daslook kan afgeleid zijn van dassen, die in burchten in de grond leven en waar daslook veel voorkomt.
De elliptisch tot lancetvormige bladeren zijn 3-5 cm breed, donkergroen en parallelnervig. Ze zitten zo aan de ondergrondse bol dat ze een draaiing hebben in hun steel, waardoor de onderkant eigenlijk van boven te zien is.

De zuiver witte bloemen hebben zes witte bloemdekbladen en zijn in losse bolvormige schermen gegroepeerd. De bloemdekbladen zijn ongeveer 1 cm groot. De plant bloeit van april tot juni, soms tot juli. Voor het scherm zich ontvouwt zitten de bloemknoppen binnen een bloeischede, die uit twee kleppen bestaat en met de steel een speervormig uiterlijk heeft. De twee kleppen vallen af als de bloeiwijze zich opent. De plant wordt 20-40 cm hoog. De bloem heeft zes meeldraden en een driehokkig bovenstandig vruchtbeginsel. De zaden zijn zwartbruin. En de soort vermeerdert zich vooral via zaadverspreiding. De planten kunnen zo'n zes jaar oud worden.

De vroeg in het jaar bloeiende soort wordt vanwege het stuifmeel bezocht door insecten, die voor de bestuiving en dus bevruchting zorg dragen.
Jong blad van de Daslook wordt van oudsher vanwege zijn lekkere smaak gebruikt om te verwerken in soep en sla. De Duitsers, zij noemen de Daslook Bären-Lauch, zijn gek op Bärlauchsuppe.


Daslook, goed voor de bloedvaten

Knoflook kent iedereen, zowel zijn geneeskrachtige als zijn culinaire kwaliteitenworden algemeen gewaardeerd. Een andere, inheemse looksoort, die massaal als grondbedekker in loofbossen voorkomt, is daslook, Allium ursinum.

Looksoorten werden reeds bij de Romeinen "allium" genoemd; maar ook "alium" of "aleum" was gebruikelijk. Mogelijk is allium van het Latijnse woord "olere", ruiken afgeleid. Het woord 'ursinum' is op het Latijnse ursinus (beer) terug te voeren. Reeds voor Linneaus werd deze aanduiding gebruikt; Plinius in zijn Historia Naturalis spreekt over een looksoort: "... silvestre (alium), quod ursinum volcano' . Ook Dodonaeus vermeld het derde geslacht van Look dat ' in Latijn Allium ursinum wordt genoemd. In Hoochduytsch Walt knobloch oder Knoblauch. In Neerduytsch Das Loock. In Franchois Aux d’ours/ ou Ail d;ours. Dit Loock schijnt wel te wesene dat loock dat Dioscorides Scorodoprassum heet/ oft als sommighe meynen dat Ampeloprasum. Volgens de Flora Batava zouden....'De bolletjes bezitten een wormdrijvende, bederfwerende en pislozende kracht...en volgens sommigen zouden deze planten kunnen dienen om er mede ratten en mollen te verdrijven.

Daslook en zwavel
Meer en meer wordt wetenschappelijk bekend dat ook deze daslook voor hart en bloedvaten een bijzonder waardevolle plant kan zijn. In daslook vind men dezelfde zwavelverbindingen als in knoflook, methyl-L-cysteinsulfoxide en allicine. Meer en meer fysiologen zijn van mening dat een zwavelrijke voeding zeer gunstig is voor een optimale werking van ons organisme. Daarom alleen al zijn de verschillende looksoorten een nuttige aanvulling in de voeding.
Ons lichaam dekt het tekort aan zwavel in de eerste plaats door de opname van aminozuren: methionine en cysteïne. In bepaalde omstandigheden, o.a. bij het ouder worden, kan deze zwavelreserve uitgeput geraken, waardoor een tekort aan glutathion kan ontstaan. Deze sterk werkende anti-oxydant kan vrije radicalen neutraliseren, die mede verant­woordelijk zijn voor bepaalde degeneratieve aandoenin­gen zoals dementie, aderverkalking en veroudering in het algemeen.

Daslook, aderverkalking en schuimcellen
Afzettingen op de vaatwanden, zogenaamde plaques, worden o.a. veroorzaakt door schuimcellen (histiocyten). Doordat deze in staat zijn om geoxideerde lipoproteïnen (LDL) op te nemen, komt het tot een verdikking van de vaatwand. Deze vervetting door schuimcellen heeft een vernauwing van de bloedvaten tot gevolg, waardoor een hartinfarct of een beroerte kan ontstaan.
De zwavelactieve stoffen van daslook zorgen er voor dat de lipoproteïnen niet meer kunnen worden opgenomen in de vaatwand. Door de aanwezigheid van glutamyl-peptiden in de bladeren heeft daslook ook een remmende werking op het ACE enzym dat de bloeddruk regelt. Zo kan daslook op verschillende manieren hart en bloedvaten beïnvloeden.

Daslook in de keuken
Daslookblad geplukt in maart en april is ook een lekkernij in de keuken. Je kan het bijvoorbeeld in olijfolie laten trekken en gebruiken in een vinaigrette. Ook voor het maken van aioli en pesto is het geschikt. Een voordeel is ook dat hoewel het zwavelgehalte bij Daslook veel hoger is dan bij Knoflook, je er geen stinkende adem aan overhoudt. Toch is dat zeker niet bij iedereen het geval. 


Bärlauch

Wilder Knoblauch, Zigeunerlauch, Waldknoblauch, Ramsell: Bezeichnungen gibt es viele für den Bärlauch (Allium ursinum), der zu der Subfamilie der Lauchgewächse (Allioideae) aus der Familie der Amaryllisgewächse gehört. Die krautige überdauernde Pflanze kommt in fast ganz Europa bis nach Nordasien vor. Nur in der Mittelmeerregion ist sie nicht zu finden. 
Denn die Pflanze bevorzugt schattige, feuchte und humusreiche Standorte. In Auen- und Laubwäldern kommt sie daher häufig vor und kann dort große Flächen einnehmen, die schon von Weitem an ihrem charakteristischen knoblauchartigen Geruch zu erkennen sind.
 
Ab März wachsen aus einer länglichen Zwiebel meist zwei Laubblätter, die schmal und lanzettförmig sind. In den Monaten April und Mai erscheinen dann die kleinen sternförmigen weißen Blüten, die in flachen Scheindolden angeordnet sind. Durch das frühe Erscheinen gilt der Bärlauch seit jeher als Frühlingsbote.
 
Er ist eine der ältesten Heilpflanzen Europas und war schon den Germanen und Kelten bekannt. Sie schätzten ihn als blutreinigendes und stärkendes Gewächs. Viele Mythen sind mit dem Bärlauch verbunden. So sollen Bären, die bei den Germanen als sogenannte Seelentiere als Sinnbild von Kraft und Er neuerung verehrt wurden, nach dem langen Winterschlaf aus ihrer Höhle kommen und die frischen Blätter des Bärlauch fressen. Dies sollte sie für das neue Jahr stärken.
 
Vorgeschriebener Anbau im Mittelalter
 
Auch im Frühmittelalter war die Pflanze in Europa sehr beliebt. Karl der Große erließ in seiner Landgüterverordnung »Capitulare de villis vel curtis imperii« aus dem Jahr 812 nach Christus, dass Bärlauch eine der 73 Nutzpflanzen sein sollte, die neben 16 Baum­arten in allen kaiserlichen Gütern von den Verwaltern anzubauen waren. Lange Zeit blieb der Waldknoblauch eine geschätzte Heilpflanze. So beschrieb der deutsche Botaniker Hieronymus Bock den Bärlauch in seinem »Kreütter Buch« von 1539 ausführlich und verglich ihn darin mit dem Gartenknoblauch (Allium sativum): Der Waldknoblauch würde »übler stinken«, hätte aber vielleicht eine kräftigere Heilwirkung als dieser. Danach geriet der Bärlauch langsam in Vergessenheit, was vermutlich mit dem Siegeszug des Knoblauchs zusammenhing. Mittlerweile hat er aber wieder Einzug in deutsche Küchen gehalten und die Blätter werden gerne zu Suppen, Saucen, Salaten oder Pesto verarbeitet.
 
Schwefelhaltige Inhaltsstoffe
 
Der knoblauchartige Geschmack und Geruch des Bärlauchs stammt von schwefelhaltigen Inhaltsstoffen, von denen eine Vielzahl vorhanden ist. Den größten Teil machen die Cystein-Sulfoxide Methiin und Alliin, aber auch Isoalliin und Propiin aus. Diese sekundären Pflanzenstoffe sind geruchlos und nicht flüchtig, werden aber durch hydrolytische Spaltung in eine ganze Reihe von flüchtigen Verbindungen wie Allicin, Thio-Sulfinate und Polysulfide umgewandelt, die den charakteristischen Duft ausmachen. Neben den schwefelhaltigen Verbindungen kommt noch eine Reihe von anderen Pflanzeninhaltstoffen vor, zu denen Polyphenole wie Flavonoide, steroidale Glykoside und Lectine gehören. Zudem enthält Allium ursinum nennenswerte Mengen an Magnesium, Mangan und Eisen und ist reich an Adenosin, das eine gefäßerweiternde Wirkung besitzt.
 
Angewendet wird der Bärlauch traditionell zur Kräftigung und »Reinigung des Blutes«. Dabei können alle Teile der Pflanze genutzt werden, denn alle sind essbar. Für medizinische Zwecke werden in der Regel die Blätter (Allii ursini folium/herba) in den Monaten April bis Mai oder die Zwiebeln (Allii ursini bulbus) in September und Oktober geerntet. Anders als häufig angenommen, können die Blätter auch verwendet werden, wenn die Pflanze bereits blüht. Allerdings sind sie dann weniger aromatisch, und die Konzentrationen der Inhaltsstoffe fallen geringer aus. Dem Bärlauch werden neben der kräftigenden auch verdauungsfördernde, antimikrobielle und entgiftende Wirkungen nachgesagt, und er soll vor Herz-Kreislauf-Erkrankungen schützen. Extern angewendet soll er die Wundheilung beschleunigen und bei chronischen Hauterkrankungen wirksam sein.

Einige Wirkungen sind in In-vitro-Unter­su­chun­gen belegt. 

Einen Überblick über die Studien­lage geben Danuta Sobolewska von der Jagiellonian-Universität in Krakau, Polen, und Kolleginnen im Fachjournal »Phytochemistry Reviews« (doi: 10.1007/s11101-013-9334-0). Dem Artikel zufolge hat Bärlauch ein kardio­pro­tek­tives Potenzial. So können Bärlauch-Extrakte die Plättchen-Aggregation, die Cholesterol-Synthese und die Aktivität des Angiotensin-konvertierenden Enzyms (ACE) hemmen. Bei Fütterungsversuchen mit Ratten zeigte sich, dass Tiere, die über acht Wochen pulverisierte Bärlauchblätter verspeist hatten, eine signifikant niedrigere Plasma-ACE-Aktivität aufwiesen als Kontrolltiere. In Untersuchungen mit spontan hypertensiven Ratten, die über 45 Tage eine mit Bärlauch angereicherte Kost erhielten, hatten diese einen signifikant niedrigeren Blutdruck als Kontrolltiere
 
Antimikrobiell wirksam
 
Auch eine antimikrobielle Aktivität von Allium ursinum ist in vitro belegt. So konnten Extrakte das Wachstum von verschiedenen Bakterienspezies wie Staphylococcus aureus, Bacillus subtilis oder Salmonella enteritidis und von Pilzen sowie von Nematoden hemmen. Die antimikrobielle Wirkung korreliert dabei mit dem Gehalt an schwefelhaltigen Substanzen.
Trotz der jahrtausendealten Tradition von Bärlauch als Heilpflanze stecke die Erforschung des therapeutischen Nutzens noch in den Kinderschuhen, folgern Sobolewska und ihre Kolleginnen. Er habe aber durchaus therapeutisches Potenzial, das weiter untersucht werden sollte. Schon jetzt ist Bärlauch in Europa als Nahrungsergänzungsmittel und auch in Form einer homöopathischen Urtinktur erhältlich. Frisch verzehrt ist er aber leckerer. Dass man nach dem Verzehr nicht nach Knoblauch riecht, ist allerdings ein Gerücht. /



Phytochem Rev. 2015; 14(1): 81–97.
Allium ursinum: botanical, phytochemical and pharmacological overview
Danuta Sobolewska,corresponding author Irma Podolak, and Justyna Makowska-Wąs

Ramson has been used for centuries to promote general health, and as the old English proverb says:
Eat leeks in Lide [March] and ramsons in May
And all the year after the physicians may play.

There is good evidence for the use of ramson by Mesolithic people. Charred bulbs of A. ursinum were identified—in the late Mesolithic settlement at Halsskov in Denmark (Kubiak-Martens 2002). It was hypothesized that ramson was one of the plants that contributed to the hunter-gatherer diet. A. ursinum was known to the early Celts and to the ancient Romans. The Greek physician Dioscorides mentioned four kinds of onion, among them A. ursinum and also attributed a detoxifying effect to the plant (Meyer et al. 1999; Richter 1999). Ramson was well known also in the Middle Ages; it belongs to the group of plants often found at medieval West Slavic archeological sites (Celka 2011). King Charles the Great, also known as Charlemagne, included A. ursinum in his Capitulare de Villis imperialibis, where he formally cataloged plants, mostly those possessing medicinal properties, and documented how the gardens should be planned and cared for (Clickner 2011). Hieronymus Bock provided drawings of the plant in his Kreutterbuch, Lonicerus judged wild garlic to be superior to regular garlic (Richter 1999; Błażewicz-Woźniak et al. 2011; Strzelecka and Kowalski 2000; Madaus 1938).

All parts of the plant are edible. For medical purposes leaves/herb—Allii ursini folium/herba, collected in April and May, and bulbs—Allii ursini bulbus, collected in September and October, are used. Ramson is usually collected from the wild. However, in Poland this species, which belongs to the group of 11 alliaceous plants growing wild there, has been partially protected since 2004 and is listed in the “Red list of plants and fungi in Poland”, what made it impossible to be wild-harvested (Szafer et al. 1988; Zarzycki and Mirek 2006).

In European traditional medicine ramson has been generally recommended as digestive stimulant, antimicrobial agent, removing toxins from the body, and to prevent cardiovascular diseases (Treben 1992; Macků and Krejča 1989; Leporatti and Ivancheva 2003). It was often applied as a remedy in respiratory problems, such as common cold with fever or bronchitis. A. ursinum has been effective when used externally to support wound healing, in chronic skin disorders, and in acne.

In recent years there has been a growing interest in its use as a dietary supplement and food. There are some records that in the nineteenth century Switzerland butter made from milk of cows fed on ramson were used. Such milk tasted slightly of garlic. Apparently in Eberbach in Germany there is a festival called Bärlauchtage—Bear’s Garlic Days, which is devoted to this plant. Today, it is a common practice to use ramson in cuisine. Fresh leaves can be eaten raw or cooked, and as a kind of pesto. They are often added to soups, gnocchi, risotto, ravioli, and as a spice to flavor hard cheeses or spreads based on cottage cheeses. Leaves and flowers can be used as a garnish to salads, while ramson’s bulbs can be used like common garlic.

Allium ursinum is also a component of dietary supplements available on the European market. For example, it is one of constituents found in the recipes used therapeutically in the University Hospital of Bucharest (Romania) (Epure et al. 2011). Such products as Api Ursomax and Memo Ursomax are recommended as detoxifying and antiatherogenic medicines. The former is additionally advertised as a mineralizing agent, while Memo Ursomax is claimed to be a memory stimulant.

Pharmacological studies

Modern pharmacological studies have confirmed many of the above mentioned traditional indications of ramson. For example, a great number of in vitro and in vivo experiments showed that A. ursinum is a plant with a high potential for the prevention and treatment of cardiovascular system diseases. Different extracts obtained from the fresh leaves of A. ursinum were tested in vitro on human platelet aggregation. The results showed a significant inhibitory activity of the ethanol extract on ADP-induced aggregation. The mechanism of action was similar to that of a reference drug Clopidogrel (Hiyasat et al. 2009). It was suggested, that the active compounds exerting antiaggregatory effect are 1,2-di-O-α-linolenoyl-3-O-β-d-galactopyranosyl-sn-glycerol (DLGG) (Fig. 5) and β-sitosterol 3-O-β-d-glucopyranoside (Sabha et al. 2012). DLGG has previously been identified in a number of medicinal and food plants, and has been shown to possess anti-inflmmatory activity (Larsen and Christensen2007).

Moreover, two of the flavonoids present in ramson leaves: kaempferol 3-O-β-neohesperidoside-7-O-β-d-glucopyranoside and 3-O-β-neohesperidoside (Fig. 6), showed in vitro inhibitory activity on platelet aggregation induced by collagen (Carotenuto et al. 1996). As other kaempferol glycosides were inactive, it was concluded that the presence of p-coumaroyl group in the molecule and the increase in the number of monosaccharides in the sugar residue deplete the antiplatelet potential of these compounds.


Fig. 6
Flavonoids exerting in vitro inhibitory activity on platelet aggregation induced by collagen

Ramson’s administration affects also the activity of ACE. In vitro tests on the water extract from the leaves (at the concentration of 0.3 mg/ml), showed higher inhibition of this enzyme activity as compared to garlic leaves extract (58 vs. 30 %) (Sendl et al. 1992a). This probably resulted from the differences in glutamyl peptides contents. The in vitro study on the effect of the ramson essential oil on the artificial liposome membrane model demonstrated that the fluidity of the membrane close to the surface was statistically non-significantly changed, while in deeper layers the fluidity increased (Godevac et al. 2008). The authors postulated that further studies should be continued to estimate the role of A. ursinum volatile oil in the regulation of membrane functions in hypertension.

In vivo experiments on rats fed for 8 weeks standard diet with 2 % of pulverized A. ursinum leaves showed significantly lower plasma ACE activity in the ramson group as compared to control (Rietz et al. 1993). The studies performed on Spontaneously Hypertensive Rats (Okamoto strain) that were fed with diet containing 1 % w/w ramson (Pfannenschmidt, Inc. of Hamburg) showed that after 45 days it reduced final mean systolic blood pressure when compared to control (173 ± 0.7 vs. 189 ± 1.2 mm Hg respectively) (Preuss et al. 2001). Diet enrichment with ramson was more effective than with garlic at the same concentration (the final SBP—175 ± 1.2 mm Hg). A. ursinum decreased elevated circulating insulin concentration and total cholesterol level, however HDL tended to increase. Similarly, when both garlics were consumed at lower concentrations—0.1 % (w/w)—systolic blood pressure readings at 10, 18, and 26 days were significantly lower in rats consuming ramson compared to the animals consuming common garlic. Authors concluded that these effects may be associated with high concentration of glutamyl peptides, adenosine or phenolic compounds in ramson. They suggested that consuming A. ursinum may result in a greater therapeutic benefit when compared to A. sativum at a given concentration. Animal studies demonstrated that ramson-containing diet may reduce the size of the ischemic zone and ischemia and reperfusion—induced arrhythmias (Rietz et al. 1993).

Ramson showed in vitro inhibitory activity on cholesterol synthesis. Chloroform and chloroform/acetone extracts from A. ursinum bulbs, at concentrations of 166 μg/ml, inhibited cholesterol biosynthesis by 49.3 and 48.9 %, respectively. The results were nearly identical to those obtained for garlic extracts. Of the pure investigated components present in the extracts ajoene, methyl ajoene, 2-vinyl-4H-1,3-dithiin and allicin were the strongest cholesterol synthesis inhibitors, providing at the concentration of 10−3 M the inhibition values of 69.5, 72, 58.4, and 52.2 %, respectively (Sendl et al. 1992b). Pharmacological studies have also revealed that chloroform and acetone/chloroform extracts from ramson exerted in vitro inhibitory activity on 5-lipoxygenase and cyclooxygenase, however they were less effective than the corresponding garlic extracts (Sendl et al. 1992a). Thrombocyte aggregation test revealed no differences between A. ursinum and A. sativum extracts (Sendl et al.1992a).

As was mentioned above, A. ursinum has been valued in traditional medicine as an antimicrobial agent used either internally or externally. There is a substantial number of reports in which the antimicrobial activity of various extracts prepared from different plant parts were tested in vitro against a wide array of bacterial and fungal strains.

Comparative analysis of water and methanol extracts from ramson herb (at the concentration range 0.16–83.7 and 0.06–35.5 mg/ml, respectively) showed that the latter was more active against microbes. It inhibited the growth of the following bacteria: Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Proteus mirabilis,Salmonella enteritidis, and fungi: Cladosporium sp., Aspergillus niger, Rhizopus nigricans, Geotrichum candidum, Penicillium expansum, Candida lipolytica, Mycoderma, Saccharomycopsis fibuligera (Synowiec et al. 2010). The average antibacterial MIC value was 35 mg/ml with the exception of S. aureus ATTC 25923 strain, in the case of which the MIC was 17.7 mg/ml. The highest antifungal effect was observed against C. lipolytica (MIC = 8.9 mg/ml), whereas for other tested strains it was less pronounced (MIC = 17.7 mg/ml), however still much higher in comparison to the water extract (concs. 41.9–83.7 mg/ml). The antibacterial activity of the water extract was seen only against B. subtilis ATTC 6633 (at 83.7 mg/ml). A water extract (at pH 7.0, adjusted with 0.1 mol/l K2HPO4) from A. ursinum leaves exhibited antibacterial activity in vitro against Listeria monocytogenes, S. aureus, E. coli, and Salmonella enterica subsp. enterica (Sapunjieva et al. 2012). The inhibition zones were greater in the case of Gram (+) bacteria.

A comparative analysis of the in vitro germination and growth inhibitory effects of the ethanol extracts from flowers and leaves of A. ursinum against A. niger, Botrytis cinerea, Botrytis paeoniae, Fusarium oxysporum f.sp.tulipae, Penicilium gladioli and Sclerotina sclerotiorum showed that the flower extract possessed the highest antifungal activity (MIC 100, 60, 70, 140, 90, and 60 μg/ml, respectively). The authors claimed that the antifungal effects of the extracts could be positively correlated with allicin content: 1.946 mg allicin/ml flower extract versus 0.028 mg allicin/ml leaf extract (Parvu et al. 2011). Pure allicin at concentrations 1.57–6.25 μg/ml showed inhibitory activity against Candida, Cryptococcus, Trichophyton, Epidermophyton, and Microsporum strains (Ankri and Mirelman 1999).

Antimicrobial activity of the bulb juice of A. ursinum was correlated with storage temperature and pH levels. Its activity against selected bacteria and fungi decreased on storage at the temperature above 4 °C and with an increase in the pH value (Tynecka et al. 1993).

The antimicrobial activity of different extracts (acetone, chloroform, ethyl acetate, n-butanol and water) from fresh flowers and leaves of Bulgarian ramson was studied. Acetone extracts from both parts and chloroform extract from the leaves were active against S. aureus (MIC 625 μg/ml), while none of the extracts inhibited the growth ofE. coli. The chloroform extract from the leaves showed inhibitory effect on Candida albicans (MIC 312 μg/ml), as well (Ivanova et al. 2009). The fresh water extract from the bulbs inhibited the growth of different Candidastrains, with MIC ranging from 1 mg/ml to 4 mg/ml depending on the particular yeast strain. The adhesion ofCandida ssp. isolates to catheters (silicone-elastomer—coated latex urinary Foley catheter and PCV Thorax catheter) was not prevented by the extract even at the maximal concentration of 4.0 mg/ml (Chudzik et al. 2010). The extracts prepared from fresh A. ursinum leaves collected in Romania during blossoming phase inhibited the growth of Candida ssp. (C. albicans, C. famata, C. glabrata, C. krusei) at concentrations ranging from 0.5 to 4.0 mg/ml (Bagiu et al. 2010).

The broad spectrum of antimicrobial activity of Allium plants is generally associated with sulfur-containing compounds, however our own studies have shown that other constituents may as well contribute to that effect, to some extent. The inhibitory activity of a mixture of diosgenin tetrasaccharide and (25R)-spirost-5,25(27)-dien-3β-ol tetrasaccharide isolated from the bulbs against Candida glabrata and C. parapsilosis was determined, with MIC values of 200 and 250 μg/ml, respectively (Sobolewska et al. 2003). Both compounds however, were ineffective against Pseudomonas aeruginosa and A. niger at concentrations up to 400 μg/ml, by the disc diffusion method. With regard to antifungal properties against Trichophyton mentagrophytes and Microsporum canis the saponin mixture was active at the concentration 400 μg/ml (Sobolewska et al. 2006).

There were also some studies which evaluated the potential of ramson against parasites. For example, the juice from the bulbs was effective against free living nematode Rhabditis sp., larvae of Nippostrongylus brasiliensis, and hindered the development of Ascaris suum eggs (Chybowski 1997).

Isolated ramson’s lectins were assessed for potential inhibitory effect against HIV-1- and HIV-2-induced cytopathicity in MT4 cells (Smeets et al. 1997). The EC50 values (the concentration required to protect MT4 cells against cytopathicity of HIV by 50 %) of bulbs and leaf lectins were about 3 and 5 μg/ml for HIV-1 and HIV-2, respectively. The specific agglutination activity (the lowest concentration which still yields a visible agglutination of a 1 % suspension of erythrocytes) of AUAL, AUAI and AUAII was the same (being 1.2 μg/ml). A. ursinum lectins were more potent agglutinins than the A. sativum bulb lectins ASAI and ASAII (specific activities being 6 and 100 μg/ml, respectively), but less active than the garlic leaf lectin (0.2 μg/ml).

The occurrence in various parts of the plant of constituents with well-known antioxidant properties, such as flavonoids or carotenoids, urged investigations that would confirm ramson’s antioxidative potential. As was shown, extracts from different parts exhibited high free radicals scavenging activity. The antioxidant effect of ramson leaves may be associated not only with the presence of phenolic compounds but also with high activity of antioxidant enzymes, like catalase and peroxidase (11.48 ± 2.90 U/mg protein and 8.85 ± 0.19 U/mg protein, respectively), whereas in the bulbs, with superoxide dismutase (31.43 ± 6.96 U/mg protein) (Štajner et al. 2008; Štajner and Szöllosi Varga 2003).

Also, the volatile oil of ramson has been tested, however it demonstrated poor antioxidant activity against DPPH+and ABTS+ in comparison to BHT (butylated hydroxytoluene) and Trolox. On the other hand, in the beta-carotene-linoleic bleaching test the oil showed an effect comparable to that of BHT (Godevac et al. 2008). Based on these results, the authors concluded that the antioxidant effect depends on the method used, and also on which free radical generator or oxidant is involved (Godevac et al. 2008). It seems therefore mandatory to employ different analytical methods that would varying oxidation initiators and targets.

Nevertheless, some isolated ramson volatile oil constituents have revealed promising antioxidant properties. Diallyl disulfide increased the intracellular content of reduced glutathione in rat red blood cells, while diallyl sulfide enhanced the activity of antioxidative enzymes, and activated Nrf2 protein, what resulted in suppression of inflammatory cytokines (Wu et al. 2001; Kalayarasan et al. 2009).

Other pharmacological activities which were reported for A. ursinum include in vitro cytotoxicity. Nine different extracts (chloroform, methanol, and water) prepared by hot extraction of fresh leaves, flowers, and flower stems were analysed in vitro against murine cancer cell lines melanoma B16 and sarcoma XC (Trypan Blue Exclusion Test of Cell Viability) (Sobolewska et al. 2012). The methanol extracts from the aerial parts and the aqueous extracts from leaves and flowers were inactive or only slightly active over the entire concentration range (10–200 μg/ml) against both cell lines, while the aqueous extracts from flower stems showed no activity towards melanoma B16 cells. The chloroform extract from flower stems showed the most promising cytotoxic activity: at the concentration of 60 μg/ml of this extract 100 % of melanoma B16 cells were killed after 24 h, while at the concentration of 20 μg/ml—after 48 h. In both cell lines colchicine had an ED50 value lower than 2 μg/ml (0.5 ± 0.003—melanoma B16; 1.5 ± 0.005—sarcoma XC) after 24 h (Sobolewska et al. 2012). Moreover, cytotoxic activity of a mixture of diosgenin tetrasaccharide and (25R)-spirost-5,25(27)-dien-3β-ol tetrasaccharide on melanoma B16, sarcoma XC and human fibroblasts HSF was evaluated as well. The saponin mixture was found active against murine melanoma B16 and sarcoma XC. It exhibited 100 % effect at 2 μg/ml on both strains. It showed no activity towards human fibroblasts HSF at concentrations below 3 μg/ml (Sobolewska et al. 2006).

Diallyl disulfide (a component of ramson volatile oil) inhibited the proliferation of various human cancer cell lines, including breast, lung, colon cancers, lymphomas and neuroblastoma. The mechanism of action involved cell cycle arrest or apoptosis. Also, diallyl trisulfide induced apoptosis in human prostate cancer cell lines PC-3 and DU-145 (Lai et al. 2012).

References

  1. Andersson ME. Aluminium toxicity as a factor limiting the distribution of Allium ursinum L. Ann Bot.1993;72:607–611. doi: 10.1006/anbo.1993.1151. [Cross Ref]
  2. Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999;1(2):125–129. doi: 10.1016/S1286-4579(99)80003-3. [PubMed] [Cross Ref]
  3. Bagiu RV, Vlaicu B, Butnariu M. Chemical composition and in vitro antifungal activity screening of theAllium ursinum L. (Liliaceae) Int J Mol Sci. 2010;13:426–1436. [PMC free article] [PubMed]
  4. Benkeblia N, Lanzotti V. Allium thiosulfinates: chemistry, biological properties and their potential utilization in food preservation. Food. 2007;1(2):193–201.
  5. Berger F. Handbuch der Drogenkunde. Vienna: Wilhelm Maudrich/Verlag; 1960.
  6. Bierzychudek P. Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytol. 1982;90:757–776. doi: 10.1111/j.1469-8137.1982.tb03285.x. [Cross Ref]
  7. Błażewicz-Woźniak M, Michowska A. The growth, flowering and chemical composition of leaves of three ecotypes of Allium ursinum L. Acta Agrobot. 2011;64(4):171–180. doi: 10.5586/aa.2011.058.[Cross Ref]
  8. Błażewicz-Woźniak M, Kęsik T, Michowska AE. Flowering of bear garlic (Allium ursinum L.) cultivated in the field at varied nitrogen nutrition and mulching. Acta Sci Pol Hortorum Cultus. 2011;10(3):133–144.
  9. Block E, Naganathan S, Putman D, et al. Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (ramsoms), leek, scallion, shallot, elephant (great-headed) garlic, chive, and chinense chive. Uniquely high allyl to methyl ratios in some garlic samples. J Agric Food Chem. 1992;40:2418–2430. doi: 10.1021/jf00024a017. [Cross Ref]
  10. Böhling N. Eine Hypothese zur Ableitung des Namens „Bär“lauch. Ber Inst Landschafts-Pflanzenökologie Univ Hohenheim Heft. 2008;17:199–204.
  11. Borelli F, Capasso R, Izzo AA. Garlic (Allium sativum L.): adverse effects and drug interactions in humans. Mol Nutr Food Res. 2007;51:1386–1397. doi: 10.1002/mnfr.200700072. [PubMed] [Cross Ref]
  12. Boscher J, Auger J, Mandon N, et al. Qualitative and quantitative comparison of volatile sulphides and flavour precursors in different organs of some wild and cultivated garlics. Biochem Syst Ecol.1995;23(7/8):787–791. doi: 10.1016/0305-1978(95)00072-0. [Cross Ref]
  13. Carotenuto A, De Feo V, Fattorusso E, et al. The flavonoids of Allium ursinum. Phytochemistry.1996;41(2):531–536. doi: 10.1016/0031-9422(95)00574-9. [PubMed] [Cross Ref]
  14. Celka Z. Relics of cultivation in the vascular flora of medieval West Slavic settlements and castles. Biodivers Res Conserv. 2011;22:1–110. doi: 10.2478/v10119-011-0011-0. [Cross Ref]
  15. Chase MW, Reveal JL, Fay MF. A subfamilial classification for the expanded asparagalean familiesAmaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Bot J Linn Soc. 2009;161(2):132–136. doi: 10.1111/j.1095-8339.2009.00999.x. [Cross Ref]
  16. Chudzik B, Malm A, Rajtar B et al (2010) The fresh extracts of Allium species as potential in vitro agents against planktonic and adherent cells of Candida spp. Ann Univ Mariae Curie-Sklodowska, DDD Pharm 23(1):73–78
  17. Chybowski J. Badania aktywności przeciwrobaczej wyciągów czosnkowych. Herba Pol. 1997;43(4):383–387.
  18. Činčura F, Feráková V, Májovský J, et al. Pospolite rośliny środkowej Europy. Warszawa: PWRiL; 1990.
  19. Clickner T. A miscellany of garlic: from paying off pyramids and scaring away tigers to inspiring courage and curing hiccups, the unusual power behind the world’s most humble vegetable. Cincinnati: F+W Media; 2011.
  20. Colombo ML, Assisi F, Puppa TD, et al. Exposures and intoxications after herb-induced poisoning: a retrospective hospital-based study. J Pharm Sci Res. 2010;2(2):123–136.
  21. Condrat D, Mosoarca C, Zamfir AD, et al. Qualitative and quantitative analysis of gallic acid in Alchemilla vulgaris, Allium ursinum, Acorus calamus and Solidago virga-aurea by chip-electrospray ionization mass spectrometry and high performance liquid chromatography. Cent Eur J Chem. 2010;8(3):530–535. doi: 10.2478/s11532-010-0012-4. [Cross Ref]
  22. Copra-Janicijevic A, Muradic S, Huseinovic S, et al. Isolation of essential oils of Allium ursinum L. from Bosnia. Planta Med. 2008;74:PI42. doi: 10.1055/s-0028-1084950. [Cross Ref]
  23. Defelice MS. Wild garlic, Allium vineale L.—little to crow about. Weed Technol. 2003;17(4):890–895. doi: 10.1614/0890-037X(2003)017[0890:WGAVLT]2.0.CO;2. [Cross Ref]
  24. Djurdjevic L, Dinic A, Pavlovic P, et al. Allelopathic potential of Allium ursinum L. Biochem Syst Ecol.2004;32:533–544. doi: 10.1016/j.bse.2003.10.001. [Cross Ref]
  25. Eggert A. Dry matter economy and reproduction of a temperate forest spring geophyte Allium ursinum.Ecography. 1992;15:45–52. doi: 10.1111/j.1600-0587.1992.tb00007.x. [Cross Ref]
  26. Ellenberg HH. Vegetation ecology of Central Europe. Cambridge, New York: Cambridge University Press; 1988.
  27. Epure LI, Roman GV, Mărăcineanu R (2011) Studies on medicinal and aromatic plants used in the therapeutic recepies in the Bucharest university hospital. Science Papers UASVM, LIV, pp 304–313
  28. Ernst WHO. Population biology of Allium ursinum in northern Germany. J Ecol. 1979;67:347–362. doi: 10.2307/2259355. [Cross Ref]
  29. Farkas A, Molnàr R, Morschhauser T, et al. Variation in nectar volume and sugar concentration of Allium ursinum L. ssp. ucrainicum in three habitats. ScientificWorldJournal. 2012;2012:138579. doi: 10.1100/2012/138579. [PMC free article] [PubMed] [Cross Ref]
  30. Friesen N, Fritsch RM, Blattner FR. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA its sequences. Aliso. 2006;22:372–395.
  31. Fritsch RM, Keusgen M. Occurrence and taxonomic significance of cysteine sulphoxides in the genusAllium L. (Alliaceae) Phytochemistry. 2006;67:1127–1135. doi: 10.1016/j.phytochem.2006.03.006.[PubMed] [Cross Ref]
  32. Gilotta I, Brvar M. Accidental poisoning with Veratrum album mistaken for wild garlic (Allium ursinum)Clin Toxicol (Phila) 2010;48(9):949–952. doi: 10.3109/15563650.2010.533675. [PubMed] [Cross Ref]
  33. Gîtin L, Dinică R, Parnavel R. The influence of extraction method on the apparent content of bioactive compounds in Romanian Allium spp. leaves. Not Bot Horti Agrobot Cluj Napoca. 2012;40(1):93–97.
  34. Godevac D, Vujisić L, Mojović M, et al. Evaluation of antioxidant capacity of Allium ursinum L. volatile oil and its effect on membrane fluidity. Food Chem. 2008;107(4):1692–1700. doi: 10.1016/j.foodchem.2007.10.017. [Cross Ref]
  35. Govaerts R, editor. World checklist of selected plant families. Richmond, Surrey: Royal Botanic Gardens; 2011.
  36. Hanelt P, Büttner R. Mansfeld’s encyclopedia of agricultural and horticultural crops. Berlin, New York: Springer; 2001.
  37. Hegnauer R. Chemotaxonomie der Pflanzen. Basel: Birkhäuser/Verlag; 1963.
  38. Hendry G. The ecological significance of fructan in a contemporary flora. New Phytol.1987;106(Suppl.):201–216.
  39. Hermy M, Honnay O, Firbank L, et al. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv. 1999;91(1):9–22. doi: 10.1016/S0006-3207(99)00045-2. [Cross Ref]
  40. Hiyasat B, Sabha D, Grötzinger K, et al. Antiplatelet activity of Allium ursinum and Allium sativum.Pharmacology. 2009;83(4):197–204. doi: 10.1159/000196811. [PubMed] [Cross Ref]
  41. Ivanova A, Mikhova B, Najdenski H, et al. Chemical composition and antimicrobial activity of wild garlicAllium ursinum of Bulgarian origin. Nat Prod Commun. 2009;4(8):1059–1062. [PubMed]
  42. Jandl R, Kopeszki H, Glatzel G. Effect of dense Allium ursinum (L.) ground cover on nutrient dynamics and mesofauna of a Fagus sylvatica (L.) woodland. Plant Soil. 1997;189:245–255. doi: 10.1023/A:1004223011834. [Cross Ref]
  43. Kalayarasan S, Prabhu PN, Sriram N, et al. Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. Eur J Pharmacol.2009;606(1–3):162–171. doi: 10.1016/j.ejphar.2008.12.055. [PubMed] [Cross Ref]
  44. Kao S-H, Hsu C-H, Su S-N, et al. Identification and immunologic characterization of an allergen, alliin lyase, from garlic (Allium sativum) J Allergy Clin Immunol. 2004;113(1):161–168. doi: 10.1016/j.jaci.2003.10.040. [PubMed] [Cross Ref]
  45. Karpaviciene B (2006) Distribution of Allium ursinum L. in Lithuania. Acta Biol Univ Daugavp 6(1–2):117–122
  46. Keusgen M, Jünger M, Krest I, et al. Development of biosensor specific for cysteine sulfoxides. Biosens Bioelectron. 2003;18(5–6):805–812. doi: 10.1016/S0956-5663(03)00045-9. [PubMed] [Cross Ref]
  47. Klintschar M, Beham-Schmidt C, Radner H, et al. Colchicine poisoning by accidental ingestion of meadow saffron (Colchicum autumnale): pathological and medicolegal aspects. Forensic Sci Int.1999;106(3):191–200. doi: 10.1016/S0379-0738(99)00191-7. [PubMed] [Cross Ref]
  48. Kovacs JA. Data to vegetation biology and coenological relations of Allium ursinum L. stands in Eastern Transylvania. Kanitzia. 2007;15:63–76.
  49. Kubec R, Svobodova M, Velisek J. Distribution of S-alk(en)ylcysteine sulfoxides in some Allium species. Identification of a new flavour precursor: S-ethylcysteine sulfoxide (ethiin) J Agric Food Chem.2000;48:428–433. doi: 10.1021/jf990938f. [PubMed] [Cross Ref]
  50. Kubiak-Martens L. New evidence for the use of root foods in pre-agrarian subsistence recovered from the late Mesolithic site at Halsskov, Denmark. Veg Hist Archaeobot. 2002;11:23–31. doi: 10.1007/s003340200003. [Cross Ref]
  51. Lai KC, Kuo CL, Ho HC, et al. Diallyl sulfide, diallyl disulfide and diallyl trisulfide affect drug resistant gene expression in colo 205 human colon cancer cells in vitro and in vivo. Phytomedicine. 2012;19:625–630. doi: 10.1016/j.phymed.2012.02.004. [PubMed] [Cross Ref]
  52. Landshuter J, Lohmüller EM, Knobloch K. Purification and characterization of C-S-lyase from ramson, the wild garlic, Allium ursinum. Planta Med. 1994;60:343–347. doi: 10.1055/s-2006-959497. [PubMed][Cross Ref]
  53. Larsen E, Christensen LP. Common vegetables and fruits as a source of 1,2-di-O-α-linolenoyl-3-O-β-D-galactopyranosyl-sn-glycerol. A potential anti-inflammatory and antitumor agent. J Food Lipids.2007;14:272–279. doi: 10.1111/j.1745-4522.2007.00085.x. [Cross Ref]
  54. Leporatti ML, Ivancheva S. Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J Ethnopharmacol. 2003;87:123–142. doi: 10.1016/S0378-8741(03)00047-3. [PubMed] [Cross Ref]
  55. Leuschner C, Lendzion J. Air humidity, soil moisture and soil chemistry as determinants of the herb layer composition in European beech forests. J Veg Sci. 2009;20:288–298. doi: 10.1111/j.1654-1103.2009.05641.x. [Cross Ref]
  56. Lyantagaye SL. Ethnopharmacological and phytochemical review of Allium species (sweet garlic) andTulbaghia species (wild garlic) from Southern Africa. Tanzan J Sci. 2011;37:58–72.
  57. Macků J, Krejča J. Atlas roślin leczniczych. Wrocław: Zakład Narodowy im. Ossolińskich; 1989.
  58. Madaus G. Lehrbuch der Biologischen Heilmittel. Leipzig: Georg Thieme/Verlag; 1938. pp. 480–483.
  59. Maine Department of Agriculture, Conservation and Forestry (2013) Maine rare plant list and rare plant fact sheets. Allium canadense. http://Maine.gov. Cited 10 Feb 2013
  60. Meier H, Reid JSG. Reserve polysaccharides other than starch in higher plants. In: Loewus FA, Tanner W, editors. Plant carbohydrates I. Encyclopedia of plant physiology. Berlin: Springer; 1982.
  61. Meyer FG, Emmart Trueblood E, Heller JL. The great herbal of Leonhart Fuchs. De historia stripium commentari insignes, 1542. Stanford: Stanford University Press; 1999.
  62. Morschhauser T, Rudolf K, Botta-Dukát Z, et al. Density-dependence in the establishment of juvenileAllium ursinum individuals in a monodominant stand of conspecific adults. Acta Oecol. 2009;35(5):621–629. doi: 10.1016/j.actao.2009.05.010. [Cross Ref]
  63. Munday R, Munday JS, Munday CM. Comparative effects of mono-, di-, tri-, and tetrasulfides derived from plants of the Allium family: redox cycling in vitro and hemolytic activity and phase 2 enzyme induction in vivo. Free Radic Biol Med. 2003;34(9):1200–1211. doi: 10.1016/S0891-5849(03)00144-8. [PubMed][Cross Ref]
  64. Nagori BP, Solanki R, Sharma N. Natural healing agent: garlic, an approach to healthy life. IJRAP.2010;1(2):358–366.
  65. Oborny B, Botta-Dukat Z, Rudolf K, Morschhauser T. Population ecology of Allium ursinum, a space-monopolizing clonal plant. Acta Bot Hung. 2011;53(3–4):371–388. doi: 10.1556/ABot.53.2011.3-4.18.[Cross Ref]
  66. Oszmiański J, Kolniak-Ostek J, Wojdyło A. Characterization and content of flavonol derivatives of Allium ursinum L. plant. J Agric Food Chem. 2013;61:176–184. doi: 10.1021/jf304268e. [PubMed] [Cross Ref]
  67. Parvu M, Parvu AE, Vlase L, et al. Antifungal properties of Allium ursinum L. ethanol extract. J Med Plants Res. 2011;5(10):2041–2046.
  68. Preuss HG, Clouatre D, Mohamadi A, et al. Wild garlic has a greater effect than regular garlic on blood pressure and blood chemistries of rats. Int Urol Nephrol. 2001;32(4):525–530. doi: 10.1023/A:1014417526290. [PubMed] [Cross Ref]
  69. Puxbaum H, König G. Observation of dipropenyl disulfide and other organic sulfur compounds in the atmosphere of a beech forest with Allium ursinum ground cover. Atmos Environ. 1997;31(2):291–294. doi: 10.1016/1352-2310(96)00162-8. [Cross Ref]
  70. Rejewski M. Pochodzenie łacińskich nazw roślin polskich. Przewodnik botaniczny. Warszawa: Książka i Wiedza; 1996.
  71. Richter T. Bärlauch in Medizin und Mythologie. Pharm Ztg. 1999;144:2197–2198.
  72. Rietz B, Isensee H, Strobach H, et al. Cardioprotective actions of wild garlic (Allium ursinum) in ischemia and reperfusion. Mol Cell Biochem. 1993;119:143–150. doi: 10.1007/BF00926865. [PubMed][Cross Ref]
  73. Rola K. Taxonomy and distribution of Allium ursinum (Liliaceae) in Poland and adjacent countries.Biologia. 2012;67(6):1080–1087. doi: 10.2478/s11756-012-0101-2. [Cross Ref]
  74. Rychnovská M, Bednář V. Floodplain forest: herb layer as indicator of its ecological status. Acta Univ Palacki Olomuc Fac Rer Nat Biol. 1998;36:7–15.
  75. Sabha D, Hiyasat B, Grötzinger K, et al. Allium ursinum L.: bioassay-guided isolation and identification of a galactolipid and a phytosterol exerting antiaggregatory effects. Pharmacology. 2012;89(5–6):260–269. doi: 10.1159/000337380. [PubMed] [Cross Ref]
  76. Sapunjieva T, Alexieva I, Mihaylova D et al (2012) Antimicrobial and antioxidant activity of extracts ofAllium ursinum L. J Biol Sci Biotech SE/ONLINE:143–145
  77. Schmitt B, Glodek J, Keusgen M (2002) Ontogenic changes of cysteine sulphoxides in Allium ursinum L. Revista de Fitoterapia 2(Suppl. 1) 224, B020
  78. Schmitt B, Schulz H, Strosberg J, et al. Chemical characterization of Allium ursinum L. depending on harvesting time. J Agric Food Chem. 2005;53:7288–7294. doi: 10.1021/jf0504768. [PubMed][Cross Ref]
  79. Sendl A. Allium sativum and Allium ursinum: part 1. Chemistry, analysis, history, botany. Phytomedicine.1995;1(4):323–329. doi: 10.1016/S0944-7113(11)80011-5. [PubMed] [Cross Ref]
  80. Sendl A, Wagner H. Isolation and identification of homologues of ajoene and alliin from bulb-extracts ofAllium ursinum. Planta Med. 1991;57(4):361–362. doi: 10.1055/s-2006-960118. [PubMed] [Cross Ref]
  81. Sendl A, Elbl G, Steinke B, et al. Comparative pharmacological investigations of Allium ursinum andAllium sativum. Planta Med. 1992;58(1):1–7. doi: 10.1055/s-2006-961378. [PubMed] [Cross Ref]
  82. Sendl A, Schliack M, Löser R, et al. Inhibition of cholesterol synthesis in vitro by extracts and isolated compounds prepared from garlic and wild garlic. Atherosclerosis. 1992;94(1):79–85. doi: 10.1016/0021-9150(92)90190-R. [PubMed] [Cross Ref]
  83. Shmanova IW, Krichfalushii WW. Biomorphological and ecologo-coenotic characteristics of Allium ursinum L. in Carpathians. Rast Res. 1995;31(3):1–18.
  84. Smeets K, Van Damme EJ, Van Leuven F, et al. Isolation, characterization and molecular cloning of a leaf-specific lectin from ramsons (Allium ursinum L.) Plant Mol Biol. 1997;35(4):531–535. doi: 10.1023/A:1005887016694. [PubMed] [Cross Ref]
  85. Sobolewska D, Janeczko Z, Galanty A, Trojanowska D (2003) Cytotoxic, antifungal and antibacterial activity of spirostanol saponin from ramson Allium ursinum L. In: Proceedings of the 3rd international symposium on natural drugs. Naples. 2–4 Oct 2003
  86. Sobolewska D, Janeczko Z, Kisiel W, et al. Steroidal glycosides from the underground parts of Allium ursinum L. and their cytostatic and antimicrobial activity. Acta Pol Pharm Drug Res. 2006;63(3):219–223.[PubMed]
  87. Sobolewska D, Janeczko Z, Podolak I, et al. Densitometric analysis of diosgenin in methanolic extracts ofAllium ursinum collected in different periods of plant development. J Planar Chromatogr. 2009;22(4):305–307. doi: 10.1556/JPC.22.2009.4.13. [Cross Ref]
  88. Sobolewska D, Galanty A, Michalik M. Preliminary evaluation of cytotoxic activity of Allium ursinumextracts. Czas Aptek. 2012;12(228):41–44.
  89. Štajner D, Szöllosi Varga I. An evaluation of the antioxidant abilities of Allium species. Acta Biol Szeged.2003;47(1–4):103–106.
  90. Štajner D, Popović BM, Candanović-Brunet J, et al. Antioxidant and scavenger activities of Allium ursinum. Fitoterapia. 2008;79(4):303–305. doi: 10.1016/j.fitote.2007.01.008. [PubMed] [Cross Ref]
  91. Strzelecka H, Kowalski J, editors. Encyklopedia Zielarstwa i Ziołolecznictwa. Warszawa: PWN; 2000.
  92. Sundov Z, Nincevic Z, Definis-Gojanovic M, et al. Fatal colchicine poisoning by accidental ingestion of meadow saffron—case report. Forensic Sci Int. 2005;149(2–3):253–256. doi: 10.1016/j.forsciint.2004.06.034. [PubMed] [Cross Ref]
  93. Synowiec A, Gniewosz M, Zieja I, et al. Porównanie właściwości przeciwdrobnoustrojowych ekstraktów z czosnku niedźwiedziego (Allium ursinum) Zesz Probl Postępów Nauk Rol. 2010;553:203–209.
  94. Szafer W, Zarzycki W. Szata roślinna Polski. Warszawa: PWN; 1972.
  95. Szafer W, Kulczyński S, Pawłowski B. Rośliny polskie. Warszawa: PWN; 1988.
  96. Treben M. Apteka Pana Boga. Porady i praktyka stosowania ziół leczniczych. Warszawa: Natur-Produkt TOM-MARK; 1992.
  97. Tynecka Z, Szcześniak Z, Głowniak K. The effect of various environmental conditions on the antimicrobial activity of Allium ursinum. Planta Med. 1993;59(7 SUPPL):A701. doi: 10.1055/s-2006-959996.[Cross Ref]
  98. Wagner H, Sendl A. Barlauch und Knoblauch. Vergleichende chemische und pharmakologische Untersuchungen von Barlauch- und Knoblauchextrakten. Dtsch Apoth Ztg. 1990;33:1809–1815.
  99. Wiater M, Sobolewska D, Janeczko Z (1998) Fatty acids in lipid fraction from the undeground parts ofAllium ursinum L. In: XVII Naukowy Zjazd Polskiego Towarzystwa Farmaceutycznego “Farmacja w perspektywie XXI w.”. Streszczenia. Kraków. 10–13 Sept 1998
  100. Wu CC, Sheen LY, Chen HW, et al. Effects of organosulfur compounds from garlic oil on the antioxidation system in rat liver and red blood cells. Food Chem Toxicol. 2001;39(6):563–569. doi: 10.1016/S0278-6915(00)00171-X. [PubMed] [Cross Ref]
  101. Wu H, Dushenkov S, Ho CT, et al. Novel acetylated flavonoid glycosides from the leaves of Allium ursinum. Food Chem. 2009;115(2):592–595. doi: 10.1016/j.foodchem.2008.12.058. [Cross Ref]
  102. Yoo KS, Pike LM. Determination of flavor precursor compound S-alk(en)yl-L-cysteine sulfoxides by an HPLC method and their distribution in Allium species. Sci Hortic. 1998;75(1–2):1–10.
  103. Zarzycki K, Mirek Z. Red list of plants and fungi in Poland. Czerwona lista roślin i grzybów Polski.Kraków: Instytut Botaniki im. W. Szafera PAN; 2006.


Wat abstracts wetenschappelijk onderzoek

Glycoconj J. 1997 Apr;14(3):331-43. Isolation and characterization of lectins and lectin-alliinase complexes from bulbs of garlic (Allium sativum) and ramsons (Allium ursinum). Smeets K, Van Damme EJ, Van Leuven F, Peumans WJ. Laboratory for Phytopathology and Plant Protection, Katholieke Universiteit Leuven, Heverlee-Leuven, Belgium.
A procedure developed to separate the homodimeric and heterodimeric mannose-binding lectins from bulbs of garlic (Allium sativum L.) and ramsons (Allium ursinum L.) also enabled the isolation of stable lectin-alliinase complexes. Characterization of the individual lectins indicated that, in spite of their different molecular structure, the homomeric and heteromeric lectins resemble each other reasonably well with respect to their agglutination properties and carbohydrate-binding specificity. However, a detailed analysis of the lectin-alliinase complexes from garlic and ramsons bulbs demonstrated that only the heterodimeric lectins are capable of binding to the glycan chains of the alliinase molecules (EC 4.4.1.4). Moreover, it appears that only a subpopulation of the alliinase molecules is involved in the formation of lectin-alliinase complexes and that the complexed alliinase contains more glycan chains than the free enzyme. Finally, some arguments are given that the lectin-alliinase complexes do not occur in vivo but are formed in vitro after homogenization of the tissue.

J Agric Food Chem. 2005 Sep 7;53(18):7288-94.Chemical characterization of Allium ursinum L. depending on harvesting time. Schmitt B, Schulz H, Storsberg J, Keusgen M. Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany.
Sulfur-containing compounds of ramson (Allium ursinum L.) are responsible for its traditional use in terms of culinary and medicinal purposes. Leaves and bulbs were investigated for their contents of cysteine sulfoxides (volatile precursors) as well as volatile compounds released from minced plant material. Plants were analyzed during the whole vegetation period, focused on the months from March to June. Additionally, within the dormancy period bulbs were analyzed again and alliinase activity was determined. The pattern of volatile compounds was analyzed both by SPME/GC-MS and by SDE/GC-MS. Compared to each other, SDE exhibited a wider spectrum of detectable volatile compounds. The quality and quantity of volatiles significantly depended on the time of harvest. The highest amounts of volatile precursors can be gained in March and April, shortly before flowering time (up to 0.4% of total cysteine sulfoxides). The main cysteine sulfoxides were alliin and isoalliin. It has been found that alliinase of A. ursinum exhibited properties similar to those of alliinase of garlic (Allium sativum L.), but differing in terms of substrate specificity.

Pharmacology. 2009;83(4):197-204. doi: 10.1159/000196811. Epub 2009 Jan 28. Antiplatelet activity of Allium ursinum and Allium sativum. Hiyasat B, Sabha D, Grotzinger K, Kempfert J, Rauwald JW, Mohr FW, Dhein S. Department of Cardiac Surgery, Heart Center, University of Leipzig, Leipzig, Germany.
Garlic (Allium sativum) has a well-established reputation as a protective agent against cardiovascular disease, while nearly nothing is known about its cousin Allium ursinum. The aim of this study was to evaluate the antiaggregatory mechanism of garlic and to compare the effects of A. ursinum and A. sativum.
METHODS:
In a prospective study, extracts were prepared from A. sativum powder made from fresh A. sativum bulbs and fresh A. ursinum leaves by maceration. The extracts were characterized by thin layer chromatography. Their in vitro effects on human platelet aggregation were examined by light transmission aggregometry after induction by adenosine diphosphate (ADP), collagen, A23187, epinephrine and arachidonic acid (ARA) in platelets from healthy volunteers.
RESULTS:
A. ursinum and A. sativum exert similar anti-aggregatory effects: they inhibit platelet aggregation induced via the ADP pathway and to a lesser extent aggregation induced by epinephrine, whereas ARA-, collagen- and A23187-induced aggregation was not affected. It became clear that the alcoholic extract of A. ursinum is the potent form, while the aqueous extract exerted an unspecific activity. The effects were strictly dose related. A. ursinum and A. sativum extracts exhibited similar potencies.
CONCLUSION:
Both A. ursinum and A. sativum exert anti-aggregatory effects. Garlic extracts are acting by inhibition of the ADP pathway; their mechanisms of action are comparable to that of the clinically used drug clopidogrel. The pharmacologically active component of the extracts appears to be lipophilic rather than hydrophilic, but the precise chemical substance is still unknown. This is the first report on the antiplatelet activity of A. ursinum.

Phytother Res. 2007 Sep;21(9):874-8. Evaluation of antioxidative properties of Allium species growing wild in Italy.
Nencini C, Cavallo F, Capasso A, Franchi GG, Giorgio G, Micheli L. Department of Pharmacology Giorgio Segre, University of Siena, Siena, Italy.
The genus Allium (Alliaceae) is an important dietary source of antioxidant phytochemical products. The antioxidant activity of some Allium species is well known but no information is available on the in vitro antioxidant activities of Italian Allium species growing wild. The aim of this study was to examine the in vitro antioxidant activity of aqueous extracts of different parts belonging to three Allium species growing wild, endemic to Italian flora: Allium neapolitanum Cyr., Allium subhirsutum L. and Allium roseum L., compared with the in vitro antioxidant activity of aqueous extracts of bulbs and leaves of the greatly studied garlic (Allium sativum L.). The antioxidant potential of extracts was evaluated using two different spectrophotometric assays: the DPPH test and FRAP assay. Furthermore the polyphenolic content was determined in all Allium species. The flowers of species growing wild showed the higher antioxidant power. Interesting results were shown even by the leaves, while the antioxidant capacity of the bulbs was lower. A correlation between the phenolic contents and the antioxidant activity was discovered. The differences in antioxidant capacity reflect the variability in the Allium species and the parts of the plant used and that the bulb of Allium sativum did not show higher antioxidant power.



En dan maar een daslooksoep tussen al dat wetenschappelijk geweld: Daslook- of bieslooksoep (voor 6 personen)

2 middelgrote uien
klontje roomboter
6 aardappelen
300 g daslookbolletjes en -bladeren
300 g bieslook
4 tenen knoflook
2 l bouillon
2 dl slagroom
250 g zachte schapenkaas
Snij de uien in stukjes. Schil de aardappelen en snij die ook in stukjes. Haal de worteltjes van de daslookbolletjes, en snijd de bolletjes fijn, net als de bladeren van de daslook. 

Bak de uien vijf minuten zachtjes in de roomboter. Doe de aardappelen en de daslook erbij. Laat tien minuten zo smoren, op laag vuur.
Voeg de bouillon toe, laat 20 minuten zachtjes koken en maal de soep fijn. Voeg de room toe, verwarm het geheel weer en dien op met in elk bord een dotje zachte schapenkaas of andere kaas.



Allium ursinum

The species belonging to the Allium family have been used for a long time as a remedy for the prevention and treatment of certain diseases [1]. The adjectives associated to these plants i.e. spicy, imposing, distinct and even the latin name Allium, deriving from the Celtic “all” meaning pungent, reflects the presence of certain flavours and scents, all sharing a single element: sulfur. Many of these sulfur compounds contain the allyl group, name deriving from Allium. The very presence of these organosulfur compounds defines the character of this species. The wide spectrum of therapeutic actions has been attributed to organosulfur substances [2,3]. The chemistry of Alliaceae offers examples of organosulfur compounds with an amazing physiological activity, organosulfur intermediate compounds with unusual bonds [4,5], challenging analytical problems, stereochemical characteristics related to the presence of sulfur, unusual organosulfur heterocycles with important spectroscopic properties, redox reactions involving sulfurs, pericyclic reactions in organo-synthetical chemistry [6,7]. The first exhaustive synthesis on these compounds was published in 1992 [8]. This paper, besides presenting an impressive number of chemically characterised compounds, confirms previous data according to which the main component with a therapeutic action is allicin [9,10]. A. ursinum (ramson) and other representatives of the Allium species, contain 1–5% nonprotein secondary metabolites of aminosulfuric acids [11]. In the cell, the stable precursor of the antibacterial principle of Cavallito, the S–oxyde (+/−) of S–2–propenyl cysteine and the S–oxyde of S–alkenyl cysteine (odour and flavour precursors) are located in the cytoplasm while the enzyme alliinase in the vacuole [12]. Both in the paper by Block [13] as well as in previous published works, two beneficial properties of this component are highlighted: the antibacterial effect and the antioxidant capacity (the property to bind reactive free radicals) [14,15]. Using chromatographic assays, the active components were isolated and subsequently identified. Analyses by high-performance liquid chromatography suggested that these compounds were sulfur components, with a characteristic absorbance at 250 nm. Gas chromatography–mass spectrometry analyses allowed the chemical structures of the isolated components to be investigated [3,16]. Ramson, garlic and onion extracts have been used in popular medicine, and commercial products of these plants record an increasing use.

According to epidemiologic evidence, low cancer risks are associated to a high intake of alliaceae [17,18], reason for which health organizations recommend the use of A. ursinum as raw material in diets aiming to prevent cellular malignancy. For all these reasons, a detailed research of the organosulfur chemistry of the genus Allium seems justified [19,20]. Literature data states that in a watery solution, allicin presents an increased stability as compared to other solvents (e.g. alcohol, acetone etc.) [21].

Referenties wetenschappelijk onderzoek
  1. Bagheri F, Gol A, Dabiri S, Javadi A: Preventive effect of garlic juice on renal reperfusion injury.

    Iran J Kidney Dis 2011, 5:194-200. PubMed Abstract | Publisher Full Text OpenURL

  2. Ray B, Chauhan NB, Lahiri DK: Oxidative insults to neurons and synapse are prevented by aged garlic extract and S–allyl–L–cysteine treatment in the neuronal culture and APP–Tg mouse model.

    J Neurochem 2011, 117:388-402. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL

  3. Bagiu RV, Vlaicu B, Butnariu M: Chemical composition and in vitro antifungal activity screening of the allium ursinum L. (Liliaceae).

    Int J Mol Sci 2012, 13:1426-1436. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL

  4. Stajner D, Popović BM, Canadanović-Brunet J, Stajner M: Antioxidant and scavenger activities of Allium ursinum.

    Fitoterapia 2008, 79:303-305. PubMed Abstract | Publisher Full Text OpenURL

  5. Sapunjieva T, Alexieva I, Mihaylova D, Popova A: Antimicrobial and antioxidant activity of extracts of Allium ursinum L. J BioSci Biotech; 2012::143-145. OpenURL

  6. Touloupakis E, Ghanotakis DF: Nutraceutical use of garlic sulfur–containing compounds.

    Adv Exp Med Biol 2010, 698:110-121. PubMed Abstract | Publisher Full Text OpenURL

  7. Iciek M, Kwiecień I, Włodek L: Biological properties of garlic and garlic–derived organosulfur compounds.

    Environ Mol Mutagen 2009, 50:247-265. PubMed Abstract | Publisher Full Text OpenURL

  8. Wabwoba BW, Anjili CO, Ngeiywa MM, Ngure PK, Kigondu EM, Ingonga J, Makwali J:Experimental chemotherapy with Allium sativum (Liliaceae) methanolic extract in rodents infected with Leishmania major and Leishmania donovani.

    J Vector Borne Dis 2010, 47:160-167. PubMed Abstract | Publisher Full Text OpenURL

  9. Kubec R, Krejcová P, Simek P, Václavík L, Hajslová J, Schraml J: Precursors and formation of pyrithione and other pyridyl-containing sulfur compounds in drumstick onion. Allium stipitatum.

    J Agric Food Chem 2011, 59:5763-5770. PubMed Abstract | Publisher Full Text OpenURL

  10. Block E: The organosulfur chemistry of the genus allium–implications for the organic chemistry of sulfur. Angew.

    Chem Int Ed Engl 1992, 31:1135-1178. Publisher Full Text OpenURL

  11. Robène-Soustrade I, Legrand D, Gagnevin L, Chiroleu F, Laurent A, Pruvost O: Multiplex nested PCR for detection of Xanthomonas axonopodis pv. allii from onion seeds.

    Appl Environ Microbiol 2010, 76:2697-2703. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL

  12. Musah RA, He Q, Kubec R: Discovery and characterization of a novel lachrymatory factor synthase in Petiveria alliacea and its influence on alliinase–mediated formation of biologically active organosulfur compounds.

    Plant Physiol 2009, 151:1294-1303. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL

  13. Sengupta A, Ghosh S, Bhattacharjee S: Allium vegetables in cancer prevention: an overview.

    Asian Pac J Cancer Prev 2004, 5:237-245. PubMed Abstract | Publisher Full Text OpenURL

  14. Young-Jik K: Effects of dietary supplementation of garlic by-products on total phenol contents, DPPH radical scavenging activity, and physicochemical properties of chicken meat.

    Korean J Food Sci Anim Resour 2010, 30:860-866. Publisher Full Text OpenURL

  15. Jung-Hye S, Duck-Joo C, Soo-Jung L, Ji-Young C, Jeong-Gyun K, Nak-Ju S: Changes of physicochemical components and antioxidant activity of garlic during its processing.

    J Life Sci 2008, 18:1123-1131. Publisher Full Text OpenURL

  16. O’Donnell G, Poeschl R, Zimhony O, Gunaratnam M, Moreira JB, Neidle S, Evangelopoulos D, Bhakta S, Malkinson JP, Boshoff HI, Lenaerts A, Gibbons S: Bioactive pyridine–N–oxide disulfides from Allium stipitatum.

    J Nat Prod 2009, 72:360-365. PubMed Abstract | Publisher Full Text |PubMed Central Full Text OpenURL

  17. Kang MH, Park HM: Hypertension after ingestion of baked garlic (Allium sativum) in a dog.

    J Vet Med Sci 2010, 72:515-518. PubMed Abstract | Publisher Full Text OpenURL

  18. Nasim SA, Dhir B, Samar F, Rashmi K, Mahmooduzzafa Mujib A: Sulphur treatment alters the therapeutic potency of alliin obtained from garlic leaf extract.

    Food Chem Toxicol 2009, 47:888-892. PubMed Abstract | Publisher Full Text OpenURL

  19. Jong-Kwan J, Se-Young Y, Jin-Su K, Young-Woo K, Ku Y, Il-Kyung K, Byung-Jo C: Effect of garlic extract supplementation on growth performance, nutrient digestibility, carcass characteristics and meat composition in broilers.

    Korean J Poultry Sci 2009, 36:287-292. Publisher Full Text OpenURL

  20. Picard Y, Roumagnac P, Legrand D, Humeau L, Robène-Soustrade I, Chiroleu F, Gagnevin L, Pruvost O: Polyphasic characterization of Xanthomonas axonopodis allii associated with outbreaks of bacterial blight on three Allium species in the Mascarene archipelago.

    Phytopathology 2008, 98:919-925. PubMed Abstract | Publisher Full Text OpenURL

  21. Ryzhikov MA, Ryzhikova VO: Application of chemiluminescent methods for analysis of the antioxidant activity of herbal extracts.

    Vopr Pitan 2006, 75:22-26. PubMed Abstract OpenURL

  22. Modelli A, Jones D: Temporary anion states and dissociative electron attachment in diphenyl disulfide.

    J Phys Chem A 2006, 110:10219-10224. PubMed Abstract | Publisher Full Text OpenURL

  23. Beato MV, Sánchez HA, de Castro A, Montaño A: Effect of processing and storage time on the contents of organosulfur compounds in pickled blanched garlic.

    J Agric Food Chem 2012, 60:3485-3491. PubMed Abstract | Publisher Full Text OpenURL

  24. Yamaji M, Tojo S, Takehira K, Tobita S, Fujitsuka M, Majima T: S–S bond mesolysis in alpha, alpha’-dinaphthyl disulfide radical anion generated during gamma–radiolysis and pulse radiolysis in organic solution.

    J Phys Chem A 2006, 110:13487-13491. PubMed Abstract | Publisher Full Text OpenURL

  25. Singh V, Belloir C, Siess MH, Le Bon AM: Inhibition of carcinogen-induced DNA damage in rat liver and colon by garlic powders with varying alliin content.

    Nutr Cancer 2006, 55:178-184. PubMed Abstract | Publisher Full Text OpenURL

  26. Antonello S, Daasbjerg K, Jensen H, Taddei F, Maran F: Formation and cleavage of aromatic disulfide radical anions.

    J Am Chem Soc 2003, 125:14905-14916. PubMed Abstract | Publisher Full Text OpenURL

  27. Rybak ME, Calvey EM, Harnly JM: Quantitative determination of allicin in garlic: supercritical fluid extraction and standard addition of alliin.

    J Agric Food Chem 2004, 52:682-687. PubMed Abstract | Publisher Full Text OpenURL


Comments