Taraxacum officinale Weber

Paardenbloem / Taraxacum officinale

Deze monografie is onderdeel van de cursus kruidenleer bij de herboristen opleiding 'Dodonaeus' en bij Syntra opleiding. Samengesteld door Maurice Godefridi, voorzitter van de herboristen vereniging

Algemene en botanische informatie

Familie: Asteraceae (Compositae) - Samengesteld­bloemi­gen.
Naam: Pissenlit (F.), Löwenzahn (D.), Dendelion (E.), Milkgowan (E.).
Volksnamen: Pisbloem, Molsla.
Naamverklaring: Taraxis = vertroebeling van de ooglens en Akeomai = gene­zen.
Tarachakon van de Arabische kruidkun­digen was een kruid met gele bloemen of een blauwbloeiende cichoreisoort.
Soorten: Vele (onder)soorten, zowat 200, verdeeld in verschillende secties bv. sectie obligua, erythrosperma, palustria, enz. (zie flora van België De Langhe en )
Teelt: Vermeerderen door zaaien

Materia Medica , gebruikte delen van Taraxacum
Taraxaci radix, De wortel van verschillende soorten Taraxacum sp.
    Oogst: Meestal laat in de herfst, soms vroeg in het voorjaar
    Drogen: Licht verwarmd (onder 40°C), in de lengte doorgesneden

Taraxaci radix cum herba, de volledige plant met wortels, geoogst in april vóór de bloei.
Taraxaci radix tostum Gebrande wortels als koffiesurrogaat (Dandelion)
Taraxaci flos, De bloem in april als wijn of limonade

Samenstelling, inhoudstoffen
** Bitterstoffen o.a. taraxacine (sesquiterpeenlactonen, vooral lente))
* Suikers tot 18 %: vooral fructose (lente)
* Inuline tot 40 %: vooral in herfst (zomer 20 %, lente 2 %)
* Enzymen o.a. tyrosinase (invloed op nieren en lever)
* Vitaminen: aneurine, nicotinezuur, vit. D (?)
* Mineralen: calcium, kalium, natrium, zwavel, kiezelzuur, mangaan. 
* triterpenoïden (saponinen) in andere soorten (T. japonicum) zoals in adaptogenen 
Nota: Sterke wisselingen in bestanddelen (inuline, mineralen) naargelang de seizoenen

Volgens http://web.auckland.ac.nz/uoa/science/about/departments/sbs/newzealandplants/maoriuses/food/herbs/tohetake-taraxacum.cfm Taraxacum officinale - 100 g of raw leaves contains 2.7 g protein, 9.2 g carbohydrates, 187 mg calcium, 66 mg phosphorus, 3.1 mg iron, 76 mg sodium, 397 mg potassium (kalium), 36 mg magnesium, 14000 IU vitamin A, 0.19 mg vitamin B1, 0.26 mg vitamin B2, 35 mg vitamin C. This equates to twice the protein, carbohydrates and phosphorus, thrice the potassium and magnesium, four times the calcium, sodium and vitamin B1, five times the vitamin B2, eight times the iron and a hundred times the vitamin A of raw cabbage.

Biol Pharm Bull. 1999 Jun;22(6):606-10. Anti-carcinogenic activity of Taraxacum plant. II. Takasaki M1, Konoshima T, Tokuda H, Masuda K, Arai Y, Shiojima K, Ageta H.
Eleven triterpenoids (1-11) from the roots of Taraxacum japonicum (Compositae) were examined for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) induced by the tumor promoter, 12-O-tetrade-canoylphorbol-13-acetate (TPA), in Raji cells as a primary screening test for anti-tumor-promoters (cancer chemopreventive agents). Of these triterpenoids, taraxasterol (1) and taraxerol (7) exhibited significant inhibitory effects on EBV-EA induction, but the inhibitory effects of their acetates 2 and 8 were weaker than those of 1 and 7. Furthermore, 1 and 7 exhibited potent anti-tumor-promoting activity in the two-stage carcinogenesis tests of mouse skin using 7,12-dimethylbenz[a]anthracene (DMBA) as an initiator and TPA as a promoter, and 1 showed a remarkable inhibitory effect on mouse spontaneous mammary tumors using C3H/OuJ mouse. These results strongly suggested that taraxasterol could be a valuable chemopreventive agent.

Farmacologie, algemene fysiologische werking 

** Cholagogum en cholereticum (toename galsecretie met factor 2 tot 4) 
Dandelion also exerts a hepatoprotective effect against acetaminophen-induced toxicity through scavenging mechanisms against reactive oxygen species (ROS) and reactive nitrogen species (RNS). In a study, the extract from dandelion had demonstrated an antioxidant and scavenging activity in vitro against 2,2-diphenyl-1-picrylhydrazyl and nitric oxide radicals. Choi et al. (2010) in their study had cited the positive hypolipidemic and antioxidant effects of dandelion, specifically the root and leaves, concluding that dandelion root and leaf could protect one against oxidative stress–associated atherosclerosis Colle D. et al. (2012). Antioxidant properties of Taraxacum officinale leaf extract are involved in the protective effect against hepatoxicity induced by acetaminophen in mice. Journal of Medicinal Food, 15(6): 549–556. http://www.ncbi.nlm.nih.gov/pubmed/22424457
Choi U. K. et al. (2010). Hypolipidemic and antioxidant effects of dandelion (Taraxacum officinale) root and leaf on cholesterol-fed rabbits. International Journal of Molecular Sciences, 11(1): 67–78. http://www.ncbi.nlm.nih.gov/pubmed/20162002

** Stimuleert de algemene stofwisseling met invloed op bindweefsel (meta­bool effect)

* Diureticum (blad sterker dan wortel) 
Clare, Conroy, and Spelman (2009) explored the effects of dandelion extract on urinary frequency and volume and found a significant (p < 0.05) increase on urinary frequency after the first dose and a significant (p < 0.001) increase as regards excretion ratio after the second dose for the entire population (n = 17) in their study. Being an herb of diuresis, dandelion proves to be of value in the treatment of conditions where induction of diuresis is of essence, such as in several heart diseases in which the reduction of blood pressure is achieved by decreasing the amount of salt and water in the body through the administration of diuretics or in edema and certain types of kidney or liver diseases. Clare B. A., Conroy R. S., Spelman K. (2009). The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. Journal of Alternative and Complementary Medicine, 15(8): 929–934. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155102/#B6

* Bloedzuiverend.
* Bloedsuikerverlagend (inuline, FOS, herfst)
* Licht laxerend (Tetau, Belaîche) 

* Anti-kanker werking?
The 2008 study of Sigstedt et al. provided scientific data on Taraxacum officinale that suggest that dandelion extracts or their constituents exert anti-cancer activities. In this study, three aqueous extracts prepared from the mature dandelion leaves, flowers, and roots were investigated for their activities on tumor progression and invasion. The results of this study had demonstrated that dandelion leaf extract suppresses the growth of MCF-7/AZ breast cancer cells in an ERK-dependent manner and blocks the invasion of LNCaP prostate cancer cells into collagen type I. On the other hand, dandelion root extract blocks the invasion of MCF-7/AZ breast cancer cells.
The flower extract of dandelion also holds striking antioxidant activity in both biological and chemical models, as shown in a 2005 Canadian study in which extended lag phase and reduced propagation rate were observed in the oxidation of linoleic acid emulsion plus dandelion flower extract. In this study, the extract from dandelion had suppressed superoxide and hydroxyl radicals. All of these results translate to dandelion being a potential novel anticancer agent.

* anti-inflammatoir (reuma) 
Dandelion leaves downregulate nitric oxide, prostaglandin E(2), and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and suppress the expression of iNOS and COX-2 by inactivating the MAP kinase signal pathway, making dandelion an anti-inflammatory agent.Koh Y. J., Cha D. S., Ko J. S., Park H. J., & Choi H. D. (2010). Anti-inflammatory effect of Taraxacum officinale leaves on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. Journal of Medicinal Food, 13(4): 870–878. doi: 10.1089/jmf.2009.1249. Retrieved 1 March 2013 from http://www.ncbi.nlm.nih.gov/pubmed/20673058

Nota: relatie met Cichorium intybus (Cichorei)

Indicatie, medisch gebruik

Lever en galstofwisseling
** Leverinsufficiëntie: hepatitis, levercyrrhose, opgezwollen lever met beslagen tong.
** Galsteenpreventie (diathese) Kuur 2 x per jaar ged. 4-6 weken
* Alcoholisme, leverbeschermend Vooral Silybum en Cynara
* Chronische, atonische obstipatie. Ontwenningskuur laxeermiddelen
* Ouderdomsdiabetes
** Voorjaarskuur. 1 vers blad 3 x daags 3 weken + dieet
** Obesitas, vetzucht + Berk + Venkel
* Reumatische aandoeningen
* Cellulitis
* Nier- en blaaslithiasis. Zgn. waterstootkuur: 1,5 l thee 's mor­gens

Huid (zuiverende leverdrainage)
* Acné zie hormonaalplanten
* Eczeem
* Herpes
* Psoriasis zie Arctium, Viola, Smilax
* Urticaria
* Huidverhardingen, huidkanker Sap uitwendig, wortelextract uitwendig
* Ouderdomshuidvlekken Sap uitwendig.
* Wratten Sap uitwendig, zie Chelidonium
Nota: Aanvullend bij albuminurie, hyperuricemie (jicht) + kruiden voor de nieren.
Aanvullend bij circulatieproblemen (hypercholesterolemie, cyanose, spat­aderen, aambeien) en oogaandoeningen.

Receptuur en Bereidingswijzen 

Vers kruid: 3 x d. 1 blad (voorjaarskuur) of salade.
Succus (sap): Blad of hele plant 2 x daags 1 eetlepel met water, sap of soep innemen
Stengel (stipites) uitwendig bij wratten
Stengels inwendig als kuur bij diabetes? (M. Treben)

Radix: Taraxaci rad. Pulvis 1 g daags 3 x daags
Decoct 2' + infuus 10' radix cum herba

Tinctuur: R./
Vers sap wortel (herfst) 100 g
Alc. 90° 18 g
Glycerine 15 g
Water 17 g
Dos.: 1 eetlepel daags. Ind. Ouderdomsdiabetes?

Species: R./
Taraxaci rad. c. hb. 25
Galegae hb. 25 dec.: 1 eetlepel per kopje
Phaseoli fr. 25 Dos.: 3 x daags
Vaccinii fr. 25 Ind.: ouderdomsdiabetes

R./
Urtica hb. Ber.: inf. 10'
Taraxaci fol. Dos.: 3 x d./kopje
Pruni spinosae fl. Ind.: voorjaarskuur (april)

Geschiedenis en Wetenschappelijk Onderzoek
  • De Arabische geneesheren hebben Paardebloem eerst gebruikt.
  • Matthiolus (10de eeuw): Tegen geelzucht, als lotion tegen schurft en eczeem.
  • Avicenna (11de eeuw): Voor de gal.
  • Brel: Taraxacum dens leonis. Revue de Phytoth. 4/45-47, 1940.
  • Chabrol e.a.: Taraxacum dens leonis. C.R. Soc. Biol. 108/1100-1102, 1931.
  • Leclerc: La Pharmacologie du Pissenlit. Journal de Méd. et de Chi­rurg. pratiques 2, 1946.
  • Leclerc: Le pissenlit. Revue de Phytoth. 16/83-86, 1952.
  • Rutherford, Vignal (1975): Experiment on the bilary secretion of the dog.
  • Brissemoret (1902): Le florion d'or. Journ. des Pract.
Recenter wetenschappelijk onderzoek
  • Baba, K., S. Abe, D. Mizuno. 1981. [Antitumor activity of hot water extract of dandelion, Taraxacum officinale—correlation between antitumor activity and timing of administration] [In Japanese]. Yakugaku Zasshi 101(6):538–543.
  • Burrows, S. and J.C.E. Simpson. 1938. The Triterpene Group. Part IV. The triterpene alcohols of Taraxacum root. J Chem Soc 2042–2047.
  • Czygan, F.C. 1990. Taraxacum officinale Wiggers—Der Lowenzahn. Z Phytother 11:99–102.
  • Hook, I., A. McGee, M. Henman. 1993. Evaluation of Dandelion for diuretic activity and variation in potassium content. Int J Pharmacog 31:29–34.
  • Kuusi, T., H. Pyysalo, K. Autio. 1985. The bitterness properties of dandelion II. Chemical investigations. Lebensm Wiss Technol 18:347–349.
  • Popov, A.I. and K.G. Gromov. 1993. Mineral components of dandelion leaves. Vopr Pitan (3):57–58.
  • Racz-Kotilla, E., G. R cz, A. Solomon. 1974. The action of Taraxacum officinale extracts on the body weight and diuresis of laboratory animals. Planta Med 26(3):212–217.
  • Sigstedt S. C. et al. (2008). Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. International Journal of Oncology, 32(5): 1085–1090. Retrieved 1 March 2013 from http://www.ncbi.nlm.nih.gov/pubmed/18425335
  • Hu C. & Kitts D. D. (2005). Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine, 12(8): 588–597. http://www.ncbi.nlm.nih.gov/pubmed/16121519
  • Van Roey Liesbeth (1991): Paardenbloem. Eindwerk vzw Dodonaeus. Info: bvba Betonie, de Merodelei 14, B 2300 Turnhout.
Typologie 

Homeopathie:
    Landkaarttong met witte vlekken.
    Klachten minder bij het lopen of bij aanraken.
    Overvloedige transpiratie 's nachts.
Culpeper: Jupiterplant "... It is of an opening and cleansing quality."
Nijlandt &Dodonaeus: "... Verkoelt ende verdrooght in de tweede graad..."
Antroposofie: Medicijn 'Stannum per Taraxacum' bij chronische degeneratieprocessen van de lever.

Verder onderzoek



Wetenschappelijk onderzoek Taraxacum officinale

J Altern Complement Med. 2009 Aug;15(8):929-34.The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day.Clare BA1, Conroy RS, Spelman K.
Taraxacum officinale (L.) Weber (Asteraceae) has been extensively employed as a diuretic in traditional folk medicine and in modern phytotherapy in Europe, Asia, and the Americas without prior clinical trial substantiation.
OBJECTIVES:
In this pilot study, a high-quality fresh leaf hydroethanolic extract of the medicinal plant T. officinale (dandelion) was ingested by volunteers to investigate whether an increased urinary frequency and volume would result.
DESIGN:
Volume of urinary output and fluid intake were recorded by subjects. Baseline values for urinary frequency and excretion ratio (urination volume:fluid intake) were established 2 days prior to dandelion dosing (8 mL TID) and monitored throughout a 1-day dosing period and 24 hours postdosing.
RESULTS:
For the entire population (n = 17) there was a significant (p < 0.05) increase in the frequency of urination in the 5-hour period after the first dose. There was also a significant (p < 0.001) increase in the excretion ratio in the 5-hour period after the second dose of extract. The third dose failed to change any of the measured parameters.
CONCLUSIONS:
Based on these first human data, T. officinale ethanolic extract shows promise as a diuretic in humans. Further studies are needed to establish the value of this herb for induction of diuresis in human subjects.

Fitoterapia. 2004 Dec;75(7-8):760-3. The bifidogenic effect of Taraxacum officinale root. Trojanová I1, Rada V, Kokoska L, Vlková E.
The infusion of dandelion root (Taraxacum officinale) stimulated in vitro the growth of 14 strains of bifidobacteria. The utilization of oligofructans, glucose, fructose and total saccharides was determined by enzymatic and phenol-sulfuric methods. Dandelion oligofructans were important source of carbon and energy for bifidobacteria tested.

Int J Mol Sci. 2010 Jan 6;11(1):67-78.Hypolipidemic and antioxidant effects of dandelion (Taraxacum officinale) root and leaf on cholesterol-fed rabbits.Choi UK1, Lee OH, Yim JH, Cho CW, Rhee YK, Lim SI, Kim YC.
Dandelion (Taraxacum officinale), an oriental herbal medicine, has been shown to favorably affect choleretic, antirheumatic and diuretin properties. Recent reports have indicated that excessive oxidative stress contributes to the development of atherosclerosis-linked metabolic syndrome. The objective of this current study was to investigate the possible hypolipidemic and antioxidative effects of dandelion root and leaf in rabbits fed with a high-cholesterol diet. A group of twenty eight male rabbits was divided into four subgroups; a normal diet group, a high-cholesterol diet group, a high-cholesterol diet with 1% (w/w) dandelion leaf group, and a high-cholesterol diet with 1% (w/w) dandelion root group. After the treatment period, the plasma antioxidant enzymes and lipid profiles were determined. Our results show that treatment with dandelion root and leaf positively changed plasma antioxidant enzyme activities and lipid profiles in cholesterol-fed rabbits, and thus may have potential hypolipidemic and antioxidant effects. Dandelion root and leaf could protect against oxidative stress linked atherosclerosis and decrease the atherogenic index.

Food Chem Toxicol. 2010 Jun;48(6):1632-7. In vitro and in vivo hepatoprotective effects of the aqueous extract from Taraxacum officinale (dandelion) root against alcohol-induced oxidative stress. You Y1, Yoo S, Yoon HG, Park J, Lee YH, Kim S, Oh KT, Lee J, Cho HY, Jun W.
The protective effects of Taraxacum officinale (dandelion) root against alcoholic liver damage were investigated in HepG2/2E1 cells and ICR mice. When an increase in the production of reactive oxygen species was induced by 300 mM ethanol in vitro, cell viability was drastically decreased by 39%. However, in the presence of hot water extract (TOH) from T. officinale root, no hepatocytic damage was observed in the cells treated with ethanol, while ethanol-extract (TOE) did not show potent hepatoprotective activity. Mice, which received TOH (1 g/kg bw/day) with ethanol revealed complete prevention of alcohol-induced hepatotoxicity as evidenced by the significant reductions of serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities compared to ethanol-alone administered mice. When compared to the ethanol-alone treated group, the mice receiving ethanol plus TOH exhibited significant increases in hepatic antioxidant activities, including catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and glutathione. Furthermore, the amelioration of malondialdehyde levels indicated TOH's protective effects against liver damage mediated by alcohol in vivo. These results suggest that the aqueous extract of T. officinale root has protective action against alcohol-induced toxicity in the liver by elevating antioxidative potentials and decreasing lipid peroxidation.

Life Sci. 2004 Jan 16;74(9):1149-57.Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.Koo HN1, Hong SH, Song BK, Kim CH, Yoo YH, Kim HM.
Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

J Med Food. 2010 Aug;13(4):870-8. Anti-inflammatory effect of Taraxacum officinale leaves on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. Koh YJ1, Cha DS, Ko JS, Park HJ, Choi HD.
To investigate the efficacy and the mechanism of the anti-inflammatory effect of Taraxacum officinale leaves (TOLs), the effect of a methanol extract and its fractions recovered from TOLs on lipopolysaccharide (LPS)-induced responses was studied in the mouse macrophage cell line, RAW 264.7. Cells were pretreated with various concentrations of the methanol extract and its fractions and subsequently incubated with LPS (1 microg/mL). The levels of nitric oxide (NO), prostaglandin (PG) E(2), and pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were determined using enzyme-linked immunosorbent assays. Expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and activation of mitogen-activated protein (MAP) kinases were analyzed using western blotting. 

The methanol extract and its fractions inhibited LPS-induced production of NO, pro-inflammatory cytokines, and PGE(2) in a dose-dependent manner. The chloroform fraction significantly suppressed production of NO, PGE(2), and two pro-inflammatory cytokines (TNF-alpha and IL-1beta) in a dose-dependent manner with 50% inhibitory concentration values of 66.51, 90.96, 114.76, and 171.06 microg/mL, respectively. The ethyl acetate fraction also inhibited production of the inflammatory molecules. The chloroform and ethyl acetate fractions reduced LPS-induced expressions of iNOS and COX-2 and activation of MAP kinases in a dose-dependent manner. Among the fractions of the methanol extract, the chloroform and ethyl acetate fractions exhibited the most effective anti-inflammatory activities. These results show that the anti-inflammatory effects of TOLs are probably due to down-regulation of NO, PGE(2), and pro-inflammatory cytokines and reduced expressions of iNOS and COX-2 via inactivation of the MAP kinase signal pathway.

Pharm Biol. 2012 Jul;50(7):883-91.Antioxidant properties of Taraxacum officinale fruit extract are involved in the protective effect against cellular death induced by sodium nitroprusside in brain of rats. Colle D1, Arantes LP, Rauber R, de Mattos SE, Rocha JB, Nogueira CW, Soares FA.
Taraxacum officinale Weber (Asteraceae), known as dandelion, is used for medicinal purposes due to its choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties.
OBJECTIVE:
We sought to investigate the protective activity of T. officinale fruit extract against sodium nitroprusside (SNP)-induced decreased cellular viability and increased lipid peroxidation in the cortex, hippocampus, and striatum of rats in vitro. To explain the mechanism of the extract's antioxidant activity, its putative scavenger activities against NO, DPPH·, OH·, and H(2)O(2) were determined.
METHODS:
Slices of cortex, hippocampus, and striatum were treated with 50 μM SNP and T. officinale fruit ethanolic extract (1-20 µg/mL) to determine cellular viability by MTT reduction assay. Lipid peroxidation was measure in cortical, hippocampal and striatal slices incubates with SNP (5 µM) and T. officinale fruit extract (1-20 µg/mL). We also determined the scavenger activities of T. officinale fruit extract against NO·, DPPH·, OH·, and H(2)O(2), as well as its iron chelating capacity.
RESULTS:
The extract (1, 5, 10, and 20 μg/mL) protected against SNP-induced decreases in cellular viability and increases in lipid peroxidation in the cortex, hippocampus, and striatum of rats. The extract had scavenger activity against DPPH· and NO· at low concentrations and was able to protect against H(2)O(2) and Fe(2+)-induced deoxyribose oxidation.
CONCLUSION:
T. officinale fruit extract has antioxidant activity and protects brain slices against SNP-induced cellular death. Possible mechanisms of action include its scavenger activities against reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are attributed to the presence of phenolic compounds in the extract.

Acta Biol Hung. 2010 Jun;61(2):175-90. Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice. Mahesh A1, Jeyachandran R, Cindrella L, Thangadurai D, Veerapur VP, Muralidhara Rao D.
The hepatocurative potential of ethanolic extract (ETO) and sesquiterpene lactones enriched fraction (SL) of Taraxacum officinale roots was evaluated against carbon tetrachloride (CCl 4 ) induced hepatotoxicity in mice. The diagnostic markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin contents were significantly elevated, whereas significant reduction in the level of reduced glutathione (GSH) and enhanced hepatic lipid peroxidation, liver weight and liver protein were observed in CCl 4 induced hepatotoxicity in mice. Post-treatment with ETO and SL significantly protected the hepatotoxicity as evident from the lower levels of hepatic enzyme markers, such as serum transaminase (ALT, AST), ALP and total bilirubin. Further, significant reduction in the liver weight and liver protein in drug-treated hepatotoxic mice and also reduced oxidative stress by increasing reduced glutathione content and decreasing lipid peroxidation level has been noticed. The histopathological evaluation of the liver also revealed that ETO and SL reduced the incidence of liver lesions induced by CCl 4 . The results indicate that sesquiterpene lactones have a protective effect against acute hepatotoxicity induced by the administration of CCl 4 in mice. Furthermore, observed activity of SL may be due to the synergistic action of two sesquiterpene lactones identified from enriched ethyl acetate fraction by HPLC method.


J Ethnopharmacol. 2011 Apr 26;135(1):102-9. Dandelion (Taraxacum officinale) decreases male rat fertility in vivo.
Tahtamouni LH1, Alqurna NM, Al-Hudhud MY, Al-Hajj HA.
ETHNOPHARMACOLOGICAL RELEVANCE:
Taraxacum officinale (L.) Weber ex F.H. Wigg. is commonly used in Jordan folk medicine for the treatment of panophthalmitis, chronic constipation, and diabetes. In addition, herbalists prescribe the aqueous extract of Taraxacum officinale to enhance male's fertility. The current work was undertaken to investigate the validity and/or invalidity of the aqueous extract of Taraxacum officinale on enhancing the reproductive activity in male rat.
MATERIALS AND METHODS:
Thirty three adult male rats were divided into three groups. Experimental groups received the aqueous extract of Taraxacum officinale orally for 60 days in two different sublethal doses; 1/10 LD(50) as high dose and 1/20 LD(50) as low dose, whereas the control group received distilled water.
RESULTS:
The administration of the aqueous extract of Taraxacum officinale resulted in a significant decrease in testis weight in the two experimental groups in comparison to the control group but had no effect on body or organ weight. The extract of this plant caused a decrease of the following in the two experimental groups, compared to the control group: sperm count, motility and normal morphology, pregnancy rate and diameter and wall thickness of seminiferous tubules. Also, distortion of morphology of the seminiferous tubules and arrest in spermatogenesis was observed in the experimental groups. In addition, the percentage of sperm with damaged chromatin integrity was significantly higher in the two experimental groups.
CONCLUSIONS:
From the present study, we can conclude that the aqueous extract of Taraxacum officinale acts as an anti-fertility agent rather than a fertility booster as prescribed by Jordanian herbalists.



Evid Based Complement Alternat Med. 2011; 2011: 129045.
The Efficacy of Dandelion Root Extract in Inducing Apoptosis in Drug-Resistant Human Melanoma Cells
S. J. Chatterjee,1 P. Ovadje,1 M. Mousa,1 C. Hamm,2 and S. Pandey1,*

Dandelion Root Extract (DRE) has thus far been used in traditional medicine as a detoxifying agent for digestive disorders, for lung, breast, and uterine tumours [2], and most interestingly, to treat chronic diseases of the skin [4]. However, there has been little scientific advancement made in this field with regard to the effect of dandelion root extract on cancer, and even more so on chemoresistant, human malignant melanoma skin cancer. Previous work with Taraxacum has not provided much mechanistic detail with regards to apoptosis induction, instead highlighting its antioxidant and anti-inflammatory effects. In this study of human melanoma cells, we show that Dandelion Root Extract (DRE) is more than a worthy chemopreventative, it is fast-acting, nontoxic, and therefore specific in its targeting of human melanoma cancer cells, making it a valuable chemotherapeutic. We have investigated the induction of apoptosis in human malignant melanoma cells and observed its long-term effects in human melanoma cancer.

The WST-1 assay (the readings of which are returned as a function of metabolic activity of mitochondrial dehydrogenases) reported reductions in A375 cell viability in a time- and dose-dependent manner upon DRE treatment (Figure 1(a)). By 48 hours, human melanoma A375 cells uncharacteristically showed susceptibility to apoptosis induction by DRE (Figure 1(b)), displaying morphological features of condensed and fragmented nuclei—typical of apoptotic cells. Based on cell viability and observation of extent of apoptosis by 48 hours, we established the effective dose as 2.5 mg/mL. Given that DRE has traditionally been used naturopathically for a variety of ailments, we assume that it would be relatively nontoxic to healthy cells. Our results show that the Normal Human Fibroblasts (NHFs) (which were treated at a low population doubling where NHFs have the best proliferation rate) and Peripheral Blood Mononuclear Cells remained unaffected and healthy after a 96-hour and 48- hour exposure to DRE, respectively (Figures 2(a)–2(d)).

Dandelion root extract has been resolved into components using chromatography techniques [6]; however, singular components themselves may not be enough to trigger a chemotherapeutic response in a chemoresistant cancer. Components may require each other to work in unison or even synergy, which is possibly why they have been effective as extracts in traditional medicines. With one of the triterpene components of DRE, Lupeol, Hata et al. observed a decrease in mouse melanoma differentiation [7]. This study has been supported by a two-stage skin carcinogenesis mouse model showing antiproliferative and chemopreventative activity of this compound [19]. However, initial in vivo studies with Taraxacum japonicum, conducted by Takasaki et al., concluded that it was the taraxasterol component that was the worthy cancer chemopreventative [9]. Though the extract is constituted of a myriad of compounds, we wanted to determine the resultant mechanistic effect of the combined components in specifically killing human melanoma cells.

Caspase-8 activation results from the binding of ligands (such as Fas) to the death receptors (such as Fas receptors) on the cell surface [20]. Fas-receptor-mediated apoptosis would result in recruitment and conversion of pro-caspase-8 to active caspase-8. In this study, we observed the rapid activation of caspase-8 enzyme in A375 cells, and this is corroborated by a previous report by Ariza et al. stating that these cells do express the Fas receptor, thus strengthening our theory that an extrinsic apoptotic pathway is activated [21].

Judging by the diminished activity of the mitochondrial dehydrogenases (Figure 1(a)), we also visualized dissipation of the mitochondrial membrane potential at 24 hours of treatment using JC-1. This indicates that the mitochondria is depolarized early on, and this in turn agrees with the induction of apoptosis that we observe at 48 hours of treatment, following the dissipation. Direct mitochondrial destabilization also occurred upon DRE treatment indicating that DRE action is not only cell death receptor-mediated, but that its effect on the mitochondria may not be purely resultant, but a consequence of direct mitochondria targeting and even possible cross talking between the extrinsic and intrinsic pathways. More importantly, an increase in ROS production indicates prooxidant behaviour of DRE on cancer cell mitochondria, which is contrary to the antioxidant convictions of traditional medicine and previous studies on Taraxacum extracts citing reductions in NO, ROS, RNS, and COX-2 [10, 11] in mouse macrophages. This duality in Taraxacum's operation may depend on the cell's nature—normal versus cancerous—further underlining Taraxacum's ability to distinguish between these cells.

With early activation of caspase-8 induction, we had also observed, in a preliminary study, a decrease in the levels of Bcl-2 protein within 45 minutes compared to control (Figure 6). In normal cells, keratinocytes, which regulate melanocytes, promote Bcl-2 expression [22]. Though the role of Bcl-2 expression in melanoma remains controversial in terms of tumourigenesis initiation, the cells are sure to exploit the high levels of endogenous Bcl-2 to survive [1]. Previous studies have already shown that antisense silencing of Bcl-2 sabotages melanoma survival, facilitating effective melanoma chemotherapy [23].

There are two main points that must be stated here: firstly, that noncancerous cells are unaffected by DRE treatment, and secondly, melanoma cells retain the signals to commit suicide long after DRE has been removed from the system. These cells correspond to those which remain nonapoptotic after the initial 96-hour treatment with DRE. The cell count in Figure 7(a) represents negative Trypan blue staining which indicates membrane unpermeabilized cells-viable and also apoptotic cells. Hoechst images corroborate the Trypan counts by revealing brightly stained nuclei after 96 hours mostly at 5 mg/mL DRE. These cells, therefore, have retained the signals to commit suicide long after the drug has been removed, making it a worthy chemotherapeutic (Figure 7(b)).

Upon comparison of A375 melanoma with G361, we found that the latter did not respond to the same doses and only started to respond, though minimally, to DRE at much higher concentrations (10 mg/mL)—about four times the effective concentration for A375 (Figures 8(a) and 8(b)). Since WST-1 assay showed increased susceptibility of only A375 to DRE (Figure 1(a)), measured at the mitochondrial level, differences between these cell lines could highlight the mechanism by which DRE is acting to induce programmed cell death in one cell line (A375) while being resisted by the second (G361). According to Su et al., in a microarray study comparing different melanoma cell lines for gene expression, it was found that G361 and A375s have varying levels of antioxidant and anti- and pro-apoptotic genes that are expressed [24]. For example, at basal conditions, the antioxidant, prosurvival gene, ATOX1, is up-regulated, and the pro-apoptotic gene, CASP4, is down-regulated in G361, but is uninduced in A375 in both cases. Quantification of gene expression using qRT-PCR, by Su et al., showed significant up-regulation in 3 antiapoptotic genes (PHB, PPP2R1B, and OPA) and the antioxidant gene for glutathione reductase (GSR). We could speculate that a combination of these factors could contribute to why G361 does not respond to DRE treatment, and by eliminating these factors, we could possibly determine how DRE might therefore act in A375 human melanoma cells.

With the relatively resistant G361 cells not responding to DRE treatment, we used the anti-type-II diabetes drug, metformin, to sensitize the cells. The energy metabolism of cancer cells being different from normal cells potentiates this difference as a point of specific vulnerability [14]. Metformin acts as a metabolism interfering compound that debilitates cancer cells, and the case of G361-resistant melanoma cells, combining DRE with metformin reduces cell viability at even lower doses (Figures 9(a) and 9(b)). Up to date work on human melanoma cells treated with metformin has been unprecedented. Figure 9(a) shows that cell viability is reduced with metformin treatment alone. However, morphologically, under the microscope, we found that the number of cells was unaffected by metformin treatment alone (1 mM–8 mM). This means cell viability reduction was due to metformin inhibiting some of the metabolic enzymes in these cells, but without affecting the cell number (data not shown). In all other cases, there was always a correlation with the WST-1 activity and viability/cell number.

The dandelions that we had collected for this investigation were harvested in the month of May. Previous studies with Canadian dandelion have stated that during Autumn senescence, there is a accumulation of amino acids in the roots, but the levels of amino acids diminish in Spring, resulting in fluctuations between asparagine and glutamine across the seasons [25]. This is indicative that our extract is not primarily amino acid based.

As mentioned before, various components like Lupeol have been considered as chemopreventatives for cancer. Components of DRE include sesquiterpenes (derivatives of germacranolide, eudesmanolide, and guaianolide), different triterpenes like taraxasterol—their hydroxy derivatives and their acetates—phenolics compounds (such as chicoric acid, vanillic acid, p-hydroxyphenylacetic acid, p-hydroxybenzoic acid, syringic acid, caffeic acid, chlorogenic acid, and ferulic acid), and coumarins (scopoletin, esculetin, and umbelliferone) [26]. We are yet to determine the effect of each of the individual components (such as the family of triterpene alcohols and phenolic acids—found in the roots—and cinnamic acids, flavinoids and coumarins—that are found in the leaves) [27] but we believe that the compounds in DRE most likely work in synergy with each other to produce the aforementioned resultant effect. We have performed high performance liquid chromatography (HPLC) with our water soluble DRE and compared it to a commercially available DRE. Both extracts produced similar profiles (data not shown). We have previously performed protease digestion on DRE and found that it did not have any effect on its activity on cancerous cells. In this study, we are narrowing on the therapeutic potential of dandelion root extract rather than its caliber as a prophylactic agent. We believe that this nontoxic extract can undergo precipitous translation from bench top to bedside, with dandelion products that are already commercially available in the form of tea and supplements. Traditional therapeutics have provided us a new scope for harnessing the potential of natural extracts in modern medicine; the efficacy of DRE is only fully being realized now as a chemotherapeutic against aggressive chemoresistant cancers.


Acknowledgment
The authors would like to thank the Knights of Columbus Chapter 9671 (Windsor, Ontario) and Seeds4Hope Windsor and Essex County Cancer Centre Foundation for their kind donations that have funded this project.

References
1. Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene. 2003;22(20):3138–3151. [PubMed]
2. Sigstedt SC, Hooten CJ, Callewaert MC, et al. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. International Journal of Oncology. 2008;32(5):1085–1090. [PubMed]
3. Sweeney B, Vora M, Ulbricht C, Basch E. Evidence-based systematic review of dandelion (Taraxacum officinale) by natural standard research collaboration. Journal of herbal pharmacotherapy. 2005;5(1):79–93. [PubMed]
4. Khare CP. Indian Herbal Remedies: Rational Western Therapy, Ayurvedic, and Other Traditional Usage, Botany. Berlin, Germany: Springer; 2004.
5. Frawley D, Lad V. An Ayurvedic Guide to Herbal Medicine. 2nd edition. Twin Lakes, Wis, USA: Lotus Press; 1988.
6. Hook ILI. Taraxacum Officinale Weber (Dandelion): In Vitro Culture, Micropropagation, and the Production of Volatile Metabolites. Berlin, Germany: Springer; 1994.
7. Hata K, Ishikawa K, Hori K, Konishi T. Differentiation-inducing activity of lupeol, a lupane-type triterpene from Chinese dandelion root (Hokouei-kon), on a mouse melanoma cell line. Biological and Pharmaceutical Bulletin. 2000;23(8):962–967. [PubMed]
8. Takasaki M, Konoshima T, Tokuda H, et al. Anti-carcinogenic activity of Taraxacum plant. I. Biological and Pharmaceutical Bulletin. 1999;22(6):602–605. [PubMed]
9. Takasaki M, Konoshima T, Tokuda H, et al. Anti-carcinogenic activity of Taraxacum plant. II. Biological and Pharmaceutical Bulletin. 1999;22(6):606–610. [PubMed]
10. Jeon HJ, Kang HJ, Jung HJ, et al. Anti-inflammatory activity of Taraxacum officinale. Journal of Ethnopharmacology. 2008;115(1):82–88. [PubMed]
11. Hu C, Kitts DD. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine. 2005;12(8):588–597. [PubMed]
12. Koo HN, Hong SH, Song BK, Kim CH, Yoo YH, Kim HM. Taraxacum officinale induces cytotoxicity through TNF-α and IL-1α secretion in Hep G2 cells. Life Sciences. 2004;74(9):1149–1157. [PubMed]
13. Jiralerspong S, Palla SL, Giordano SH, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. Journal of Clinical Oncology. 2009;27(20):3297–3302. [PMC free article] [PubMed]
14. Dowling RJO, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Research. 2007;67(22):10804–10812. [PubMed]
15. Phoenix KN, Vumbaca F, Claffey KP. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERα negative MDA-MB-435 breast cancer model. Breast Cancer Research and Treatment. 2009;113(1):101–111. [PMC free article] [PubMed]
16. Isakovic A, Harhaji L, Stevanovic D, et al. Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cellular and Molecular Life Sciences. 2007;64(10):1290–1302. [PubMed]
17. Siedlakowski P, McLachlan-Burgess A, Griffin C, Tirumalai SS, McNulty J, Pandey S. Synergy of Pancratistatin and Tamoxifen on breast cancer cells in inducing apoptosis by targeting mitochondria. Cancer Biology and Therapy. 2008;7(3):376–384. [PubMed]
18. Li N, Ragheb K, Lawler G, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Journal of Biological Chemistry. 2003;278(10):8516–8525. [PubMed]
19. Saleem M, Afaq F, Adhami VM, Mukhtar H. Lupeol modulates NF-κB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene. 2004;23(30):5203–5214. [PubMed]
20. Tang D, Lahti JM, Kidd VJ. Caspase-8 activation and Bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. Journal of Biological Chemistry. 2000;275(13):9303–9307. [PubMed]
21. Ariza ME, Broome-Powell M, Lahti JM, Kidd VJ, Nelson MA. Fas-induced apoptosis in human malignant melanoma cell lines is associated with the activation of the p34cdc2-related PITSLRE protein kinases. Journal of Biological Chemistry. 1999;274(40):28505–28513. [PubMed]
22. Zhai S, Yaar M, Doyle SM, Gilchrest BA. Nerve growth factor rescues pigment cells from ultraviolet-induced apoptosis by upregulating BCL-2 levels. Experimental Cell Research. 1996;224(2):335–343. [PubMed]
23. Strasberg Rieber M, Zangemeister-Wittke U, Rieber M. p53-independent induction of apoptosis in human melanoma cells by a bcl-2/bcl-xL bispecific antisense oligonucleotide. Clinical Cancer Research. 2001;7(5):1446–1451. [PubMed]
24. Su DM, Zhang Q, Wang X, et al. Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Molecular Cancer Therapeutics. 2009;8(5):1292–1304. [PMC free article] [PubMed]
25. Cyr DR, Bewley JD. Annual rhythicity of nitrogen reserves in the roots of pernicious perennial weeds. British Society for Plant Growth Regulation, Monograph. 1990;21:353–368.
26. Bylka W, Matlawska I, Frański R. Essential oil composition of Taraxacum officinale. Acta Physiologiae Plantarum. 2009;32:231–234.
27. Stewart-Wade SM, Neumann S, Collins LL, Boland GJ. The biology of Canadian weeds. 117. Taraxacum officinale G. H. Weber ex Wiggers. Canadian Journal of Plant Science. 2002;82(4):825–853.



Pancreas. 2012 Oct;41(7):1039-47. doi: 10.1097/MPA.0b013e31824b22a2.
Selective induction of apoptosis and autophagy through treatment with dandelion root extract in human pancreatic cancer cells.
Ovadje P1, Chochkeh M, Akbari-Asl P, Hamm C, Pandey S.

OBJECTIVES:
Pancreatic cancer has a 100% mortality rate; the aim of this study is to evaluate the efficacy of dandelion root extract (DRE) in inducing apoptosis and autophagy in aggressive and resistant pancreatic cancer cells.
METHODS:
The effect of DRE was evaluated using WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) assay. Apoptotic cell death was confirmed by nuclear condensation by Hoechst staining and externalization of phosphatidylserine to the outer leaflet of the plasma membrane by Annexin-V binding assay. Loss of mitochondrial membrane potential was observed using the JC-1 (5,5',6, 6'-tetrachloro-1,1',3,3' tetraethylbenzimidazolylcarbocyanine iodide) dye. The induction of autophagy was detected using a monodansylcadaverine assay and this was confirmed by immunofluorescence for light chain 3-II.
RESULTS:
BxPC-3 and PANC-1 pancreatic cells were sensitive to aqueous DRE. This extract induces selective apoptosis in a dose- and time-dependent manner. Dandelion root extract caused the collapse of the mitochondrial membrane potential, leading to prodeath autophagy. Normal human fibroblasts were resistant at similar doses.
CONCLUSIONS:
We demonstrate that DRE has the potential to induce apoptosis and autophagy in human pancreatic cancer cells with no significant effect on noncancerous cells. This will provide a basis on which further research in cancer treatment through DRE can be executed



Les racines de Pissenlit (Taraxacum dens leonis Des.). Dr. Francois Décaux 1950
La Phytothérapie de l'arthritique. Edit. Amedée Legrand Paris 1950

Les auteurs anciens plaçaient le Pissenlit parmi les plantes diurétiques « froides » comme la Chicorée, l'Oseille, le Fraisier, le Nénuphar, en opposition avec les plantes chaudes telles que le Persil, TAche, le Fenouil et l'Oignon et le considéraient souvent comme un des simples hépatiques, c'est-à-dire possédant « la vertu de corriger  et  de rétablir  le vice  de  la masse de  sang ».

Power et Browning ont isolé de sa racine une partie soluble formée d'acides p-oxyphényl acétique et dioxycin-namique et de choline et une partie insoluble renfermant des acides gras, deux alcaloïdes, le taraxastirol et l'homo taraxastirol et un alcool trivalent, le cluytianol : on y trouve, en plus, des sels de potasse et des substances résineuses.
Quant à la saveur amère attribuée jadis à la Taraxacine, elle est due à une matière amorphe de teinte brun foncé qui, traitée par l'alcool amylique chaud fournit un pro­duit visqueux   d'une  extrême  amertume (2) :   c'est  cette matière que  M.S Inoue a retrouvée dans la racine du Pissenlit du Japon et qu'il a décrite comme une résine d'un jaune brun et de consistance muqueuse (1).
Les expériences pratiquées chez le chien par Ruther-ford et Vignal ont prouvé que l'extrait de Pissenlit pro­voque des contractions de la vésicule biliaire se rapprochant de celles qu'on observe à la suite de l'administration du calomel :  ayant injecté   dans  le  duodénum  de  chiens  à jeun depuis  24 heures  une solution  d'extrait  solide  de Taraxacum,   Rutherford   constata  une   augmentation   de la sécrétion biliaire considérable mais de  peu de durée, sans que l'intestin révélât, à l'autopsie, d'effets purgatifs : la   drogue  se comporterait donc  comme  un  cholagogue dont l'influence  sur la vésicule justifie  la réputation  de médicament capable de relever le tonus de cet organe (2). Plus récemment des expériences sur des rats anesthésiés par   l'uréthane   ont  permis  à   Jakobus   Bussenmaker   de confirmer son action cholérétique et cholécystofcinétique (3).
Les nombreuses observations publiées par les auteurs anglais ont confirmé chez l'homme l'action stimulante du Pissenlit sur les sécrétions biliaire et urinaire. (Pemberton, Philip, Neligan.) En France, Henri Leclerc a relaté les bons effets du suc frais de Taraxacwiïn, à la dose de 50 grammes à 100 grammes, chez les malades atteints d'affections chroniques du foie, chez des sujets apparte-. nant à la famille des cholémiques qui présentaient de la cholélithiase : sous l'influence de la médication les crises douloureuses s'atténuent et l'on voit s'amender les symp­tômes d'insuffisance hépatique (ictère, fermentations intestinales, décoloration des selles, etc.)-

(1) F. Decaux. Revue de Phytothérapie, octobre 1945.
(2) F. Belting Power et H. Browning. Constituents of tara­xacum root. Am. Journ. Pharm., avril 1913.
(3) Journ. Soc. Chem. In. Japan XL, 1937.
(4) Rutherford. An expérimental research on the physiological action of drugs on, the secretion of bile. Edimbourg, 1880.
(5) Arch. Exp. Pathol. Pharmakol, 1936.

 Il a eu également l'occasion de constater, à la suite de son usage, « l'amé­lioration et même la guérison de dermatoses ayant pour étiologie une sécrétion biliaire défectueuse, de cellulites... ». Ces effets, ajoute Henri Leclerc, étaient manifestement secondés par l'action diurétique que le médicament emprunte sans doute à sa richesse en sels de potassium (1), son emploi serait donc un bon .moyen d'assurer, suivant l'expression pittoresque de Joseph Brel, « le rinçage du filtre rénal et l'essorage  de l'éponge hépatique »  (2). Joseph  Brel.  Le  Pissenlit.  Revue de Phytothérapie, avril 1940.
A la suite de ces auteurs j'ai maintes fois préconisé l'extrait de Taraxacum chez des patients atteints d'insuf­fisance biliaire et les résultats que j'ai obtenus de son emploi m'ont paru très satisfaisants.

Pharmacologie et posologie.
L'action du Pissenlit se manifestant spécialement sur la vésicule biliaire dont elle provoque électivement les ' contractions il y a parfois avantage, ainsi que je l'ai fait souvent, de lui associer d'autres médications végétales afin de combiner à son action principalement excrétoire, cholécystokinétique, une action surtout cholérétique, c'est-à-dire proprement sécrétoire.
Cette association paraît d'autant plus recommandable chez les nombreux sujets dont l'insuffisance hépatique s'accompagne de constipation relevant de perturbations de la sécrétion biliaire accompagnée ou non de spasmes intestinaux.

(1) Henri Leclerc. Les légumes de France, 3° édition. La pharmacologie du Pissenlit. Journal de médecine et de chi­rurgie pratiques, février 1946.

C'est ainsi que l'on pourra prescrire avantageusement, par exemple, 10 minutes avant chaque repas 1 à 2 cuille­rées à café d'une potion contenant par cuillère à café :
  • Extrait aqueux de Taraxacum   0,15 gr
  • Extrait   aqueux de Bourdaine....    0,15 gr.
A celle-ci il est loisible d'adjoindre, entre autres, du Polypode également sous forme <f extrait aqueux (1).
Les résultats que donne le traitement par le Taraxacum dépendant beaucoup du mode de préparation de la plante et de l'époque où elle est récoltée, il y a lieu de recourir exclusivement au suc qu'on récolte en août et en septembre beaucoup plus actif. Le mieux serait de l'administrer fraîchement exprimé s'il ne s'altérait et ne subissait très rapidement la fermentation visqueuse : c'est pourquoi la Pharmacopée britannique fait additionner le succus ta-raxaci de son poids d'alcool à 900. Le liquide ainsi obtenu étant trop chargé en alcool, A. Brissemoret conseille judi­cieusement de le remplacer par la préparation suivante : Racines fraîches de  Taraxacum, Q. V.
Exprimez le suc. Pour 100 parties, ajoutez :
  • Alcool à 90°  18 grammes
  • Glycérine    15      —
  • Eau      17      —
Filtrez : 1 à 2 cuillerées à soupe (2).
A défaut de suc frais, on peut employer l'extrait mou (1 à S grammes), ou plus simplement l'apozème peu coûteux qu'a indiqué J. Brel et qui consiste à faire bouillir dans 1 litre d'eau 3 ou 4 pieds d'un beau Pissenlit, à laisser infuser 10 minutes après ébullition et à en absorber 4 tasses par jour (3).

(1) François Decaux. Les propriétés médicinales du Pissenlit. Revue de Phytothérapie, janvier 1947.
(2) Brissemoret. Le florion d'or. Journal des praticiens, 1902.
(3)     'Joseph Brel, loc. cit.


Recherches sur le pissenlit

Usage reconnu Perte d’appétit, dyspepsie, troubles hépatobiliaires et augmentation du volume urinaire. La Commission E reconnaît l’usage de la feuille de pissenlit pour traiter la perte d’appétit et certains troubles digestifs mineurs. L'ESCOP reconnaît l’usage de la feuille en complément au traitement d’une maladie pour laquelle il est souhaitable d’augmenter l’élimination de l’urine (rhumatismes et prévention des calculs rénaux, par exemple). La Commission E reconnaît l’usage de la feuille et de la racine pour améliorer les fonctions biliaire et urinaire, traiter la perte d’appétit et les troubles digestifs mineurs. L’ESCOP estime que la racine peut stimuler les fonctions biliaire et hépatique, traiter les troubles digestifs mineurs et la perte d’appétit.

Les données scientifiques sur les effets du pissenlit sur les humains sont très limitées et la plupart datent de la première moitié du XXe siècle. Des essais menés sur des animaux ont cependant permis de confirmer, à la même époque, certains des effets bénéfiques traditionnels de la plante : augmentation de l’élimination d’urine et de la production de la bile et effet anti-inflammatoire notamment1,2.

Les auteurs d’une synthèse publiée en 2006 soulignent également que des données issues de modèles cellulaires et animaux confirment les vertus antioxydantes, anticancer et antidiabétiques du pissenlit et de ses composés3. Quelques rares essais cliniques préliminaires indiquent que certaines préparations contenant du pissenlit, entre autres plantes, peuvent soulager les crampes intestinales, la constipation et la diarrhée1.

On n'a pas encore élucidé le mécanisme à la base de l’effet diurétique de la feuille de pissenlit. En revanche, en raison de sa richesse en potassium, la plante possède un avantage certain sur les autres diurétiques. En effet, contrairement à la plupart d'entre eux, les feuilles de pissenlit ne provoquent pas de perte de potassium par les reins, selon des essais sur les animaux3,4.

Usage traditionnel Usages traditionnels. Les herboristes attribuent les effets bénéfiques du pissenlit sur les systèmes digestif et hépatobiliaire aux principes amers qu’il contient. De plus, ses feuilles et sa racine renferment une étonnante variété de minéraux, de vitamines et d'autres composés qui pourraient expliquer certaines des propriétés qu’on lui prête traditionnellement.

Outre sa grande richesse en potassium, le pissenlit contient de bonnes quantités de fer, de calcium, de cuivre, de silice et de manganèse. Quant à la racine, elle renferme, en plus des principes amers, de l’inuline et des sucres complexes, des substances qui favorisent la multiplication de bactéries intestinales bénéfiques4. Le pissenlit renferme aussi des acides gras, de la choline (un nutriment important pour le foie), des vitamines du complexe B, des vitamines C, D et K ainsi que des flavonoïdes et des caroténoïdes.

1. Études citées et résumées dans : Kemper Kathi J., MD, MPH. Dandelion (Taraxacum officinalis) The Longwood Herbal Task Force and The Center for Holistic Pediatric Education and Research. [Document pdf consulté le 26 juin 2006]. www.longwoodherbal.org
2. Études citées et résumées dans : Barnes Joan, Anderson A. Linda, Phillipson David J.Herbal Medicines, Pharmaceutical Press, Grande-Bretagne, 2002, 2e édition.
3. Schutz K, Carle R, Schieber A. Taraxacum--a review on its phytochemical and pharmacological profile. J Ethnopharmacol. 2006 Oct 11;107(3):313-23.
4. The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. Clare BA, Conroy RS, Spelman K. J Altern Complement Med. 2009 Aug;15(8):929-34.
5. Trojanova I, Rada V, et al. The bifidogenic effect of Taraxacum officinale root.Fitoterapia. 2004 Dec;75(7-8):760-3.
6. Lundh K, Hindsen M, et al. Contact allergy to herbal teas derived from Asteraceae plants.Contact Dermatitis. 2006 Apr;54(4):196-201.
7. Zhu M, Wong PY, Li RC. Effects of taraxacum mongolicum on the bioavailability and disposition of ciprofloxacin in rats. J Pharm Sci. 1999 Jun;88(6):632-4.
Comments