Rubus fructicosus / Braam

RUBUS FRUCTICOSUS L. 
Braam 
RUBUS IDAEUS L. 
Framboos 

Materia Medica 
Rubi fr. of Rubi idaei folium Het blad van Braam of Framboos, soms gefermenteerd. 
Rubi idaei fructus recens De verse, rijpe vruchten. 
Rubi idaei De jonge scheuten (gemmotherapie). 

Samenstelling 
** Looistoffen (hydroliseerbaar) ± 10 % 
* Organische zuren en vitaminen (vrucht) 
* Fragarine (analoog aan hydrastine) 

Farmacologie 
* Adstringentium 
** Spasmolyticum op ingewanden en uterus. 
Vooral bij Rubus idaeus als glycerine-maceraat door remmende invloed op hypofyse(voorkwab). Regelt zo voor al de ovarium secretie. 

Indicatie 
Maag en Darm 
** Diarree Inf. 10', 1 kof fielepel per kopje 

Hormonaal Vooral gemmo: Rubus idaeus 1D. 
** Dysmenorroe (pijnlijke menstruatie) Zie Kruiden endocrien stelsel 
* Vergemakkelijkt de bevalling Ook thee 

Algemeen 
* Als ontbijtthee theesurrogaat. 
* Smaakcorrigens. In o.a. voorjaarsthee. 
* Aanvullend bij mond- en keelontsteking zoals andere looistofkruiden met aardbeiblad en framboos 

Geschiedenis
DIOSCORIDES: Een van de meest gereproduceerde afbeeldingen uit de Codex Vindobonensis, zoals zijn kruidenboek ook werd genoemd, is die van de ‘Batos’ of onze gewone Braam. Hij schrijft daarover ‘ versterkt en verdroogt, en houdt het haar op kleur; afkooksel van de spruiten kan worden aangewend tegen diarree en vloeiingen bij vrouwen en helpt uitstekend tegen darmkoliek. Het kauwen van de bladeren versterkt het tandvlees en heelt ontstekingen van het slijmvlies van de mond. Als pleister gebruikte bladeren genezen huiduitslag, open zweren van het hoofd en aangetaste ogen.’ Opvallend is toch wel dat voor deze indicaties, het braamblad in onze tijd nog steeds terecht gebruikt wordt.

DODONAEUS ZEGT: Dioscorides beveelt ze aan als versterking van het tandvlees om de bladeren te kauwen, wat niet ongebruikelijk is omdat de bladeren enige looistoffen bevatten. Hetzelfde geldt van de spruiten tegen doorval en bloedvloed wat Plinius opgeeft. Tegen bloedvloeiingen neemt H. Hildegard het bramberecruth tezamen met bluthcruth wiens naam niet zeker is omdat het voor verschillende bloedstelpende kruiden gebruikt wordt. Konrad von Megenberg noemt het wild Maulperpaum omdat het wel vergelegen werd met de moerbei. Er zijn vondsten van de zaden uit de jongere steentijd in midden Europa als de Pfalz.
Als er in een jaar veel vruchten komen krijg je een strenge winter. In de volksmedijn worden de bladeren op open wonden gelegd, de gedroogde bladeren en wortelen dienen als een soort thee tegen hoesten, afkooksel van jonge, gedroogde bladeren werden wel gedronken tegen plasmoeilijkheden.
Zo was het gebruik vroeger. ‘Deze jonge scheutjes, bladeren, bloemen en onrijpe bessen genezen de kwade hete zweren van de mond en van de keel en insgelijks ook de gezwellen van de amandelen en huig als ze in de mond dikwijls gehouden en gekauwd worden.
Die zijn ook goed tegen de loop van de buik, tegen de rode loop en allerhande bloedgang en de onmatige vloed van de maandstonden.
Al hetzelfde kan ook het water daar deze dingen in gekookt zijn, maar vooral met wat honig vermengt is dat zeer goed om alle zeerheid van de mond te zuiveren en de hete zweren en zwellingen van de mond, tong en keel te genezen.

MELLIE UYLDERT (Plantenzielen): Van die jonge loten kan men thee trekken tegen huiduitslag. Van de verse loten, bladen en bloemen trekt men met kokend water een goed spoel- en gorgelwater voor gevallen van keel- en mondpijn, amandelontsteking, gezwollen tandvlees en aften. De vuurkracht doodt ziektekiemen en het looizuur trekt slijmvliezen en tandvlees samen. (Mars en Saturnus). Dit looizuur verbindt de denkpool en de levenspool van de min of meer gespleten mens en maakt hem weer uit één stuk!
Het versterkt de zenuwen, o.a. die van de spijsvertering, het droogt het al te waterige (lymfatische, vegetatieve, maan-achtige) op, en daarom in de braambladthee ook goed tegen diarree, witte vloed en slijmhoest. In de laatste maand van de zwangerschap gedronken, versterkt de braambladthee de spieren die straks het kind moeten uitdrijven en zal daardoor de bevalling verlichten en versnellen. Het verse braamblad kan men met de witte onderkant op huiduitslag leggen teneinde het kwaad er uit te trekken. http://recensies.infonu.nl/kunst-en-cultuur/48345-braam-en-plantenzielen.html

The genus Rubus L., indigenous to six continents, includes blackberries, raspberries, and their hybrids and is commonly referred to as brambles or briers. Rubus species were a food and medicinal source for native peoples soon after the Ice Age. This short article presents only a sample of the wealth of historical reports of medicinal uses for Rubus. Brambles were documented in the writings of the ancient Greeks: Aeschylus, Hippocrates, Krataeus, Dioscorides, and Galen; Romans: Cato, Ovid, and Pliny the Elder; Asian medicinal traditions; traditional Chinese medicine; and the Ayurvedic tradition of India. Folk traditions of native peoples throughout the world have also applied Rubus for multiple medicinal uses. Although in modern times Rubus is grown for its delicious and vitamin-rich fruit for fresh and processed product consumption, the ancients used the whole plant and its parts. Stems, branches, roots, leaves, and flowers were used in decoctions, infusions, plasters, oil or wine extractions, and condensates. Decoctions of branches were applied to stop diarrhea, dye hair, prevent vaginal discharge, and as an antivenom for snakebites. Leaves were chewed to strengthen gums and plastered to constrain shingles, head scurf, prolapsed eyes, and hemorrhoids. Flowers triturated with oil reduced eye inflammations and cooled skin rashes; infusions with water or wine aided stomach ailments. Greeks and Romans recorded female applications, whereas the Chinese described uses in male disorders. The fruits of R. chingii are combined in a yang tonic called fu pen zi, “overturned fruit bowl,” and prescribed for infertility, impotence, low backache, poor eyesight, and bedwetting or frequent urination. The Leechbook of Bald described the use of brambles against dysentery, combining ancient medicinal knowledge with pagan superstition and herb lore. Medicinal properties of Rubus continue in Renaissance and modern herbals, sanctioning leaf infusions as a gargle for sore mouth, throat cankers, and as a wash for wounds; the bark, containing tannin, was a tonic for diarrhea; and root extract, a cathartic and emetic. Recent research has measured high ellagic acid, anthocyanin, total phenolics, and total antioxidant content in Rubus fruits. Fruit extracts have been used as colorants and are now being tested as anticarcinogenic, antiviral, antiallergenic, and cosmetic moisturizing compounds. From ancient traditions through conventional folk medicines to the scientific confirmation of health-promoting compounds, Rubus is associated with health-inducing properties.

Wetenschappelijk Onderzoek 
  • Franzen, Keyssner: Rubus fruct. Seylers Ztschr. Physiol. Chem. 129/309-319 - 1923. 
  • Leclerc: Historie phytothérapique et phytodietétique de la Ronce. Aesculape 3/76-84 - mars 1938. 
  • Bergeret C., Tetau M.: Onderzoek Tetau 50 personen met dysmenorroe: 70 % genezen, 10 % verbetering, 20 % geen verbetering. La Phytothérapie renovée.
  • Jouad H, Maghrani M, Eddouks M. Hypolycaemic effect of Rubus fructicosis L. and Globularia alypum L. in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol ( 2002;) 81:: 351–6.[CrossRef][Web of Science][Medline]
  • Marquina MA, Corao GM, Araujo L, Buitrago D, Sosa M. Hyaluronidase inhibitory activity form the polyphenols in the fruit of blackberry (Rubus fruticosus B.). Fitoterapia ( 2002;) 73:: 727–9.[CrossRef][Web of Science][Medline]
  • Panizzi L, Caponi C, Catalano S, Cioni PL, Morelli I. In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius. J Ethnopharmacol ( 2002;) 79:: 165–8.[CrossRef][Web of Science][Medline]
  • Patel AV, Rojas-Vera J, Dacke CG. Therapeutic constituents and actions of Rubus species. Curr Med Chem ( 2004;) 11:: 1501–12.[Web of Science][Medline]

Internetlinks

Rubus fruticosus young shoots. http://www.gemmotherapy.info/
As a stimulant to the gonads, in both sexes; tendency to disorders of the calcium metabolism with hypertension; useful in children with a tendency to chronic appendicitis; obstructive respiratory disorders, emphysema; arthrosis; osteoporosis; problems of old age; uterine fibroids.


Traditional Uses blackberry fruit
Fruits and fruit bearing plants are believed to possess various health-promoting effects and immunity-boosting properties since long ago. Romans treated various diseases through the use of tea prepared from its leaves [20]. R. fruticosus is known as food form about 8,000 years and as a medicinal plant soon after the Ice Age [77]. Hippocrates recommended blackberry stems and leaves soaked in white wine to relieve difficulties in childbirth and as an astringent poultice on wounds [78]. Externally it is used as a gargle to treat gum inflammations, sore throats and mouth ulcers [79,80]. Decoction of leaves is used as a gargle or mouthwash and also used to treat thrush [17]. The fruit juice is used to treat asthma [7]. The leaves of the plant are also used in various respiratory problems [81]. Blackberry juice is recommended in colitis while tea made from its roots is used for relief in labor pain. Poultice is leaves are applied in skin ulcers. The fruit and juice is recommended in anemia. R. fruticosus leaves or maceration of the tops in sunlight is claimed as cicatrizing agent [82]. A methanol extract of the aerial parts has been used for wound healing, as an antiseptic and a disinfectant and to treat cough [83,84]. R. fruticosus cures skin wounds in cattle [85]. A decoction of the twig tops soothes menstruations and also is used to treat diarrhoea. Its leaves are chewed to strengthen the gums and to cure thrush. Leaves are wrapped to stop fungal infection and abscesses on skin [86]. R. fruticosus jams, prepared without sugar, is prescribed to cure throat ailments in children and as an anti-diarrhea [87].The root-bark and the leaves are depurative, strongly astringent, tonic, vulnerary and diuretic. It is used as an excellent remedy against diarrhoea, dysentery, cystitis and haemorrhoids [7,86,87].

References

  1. Swanston-Flat, S.K.; Day, C.; Bailey, C.J.; Flatt, P.R. Traditional plant treatment for diabetes: Studies in normal and streptozotocin diabetic mice. Diabetologia 1990, 33, 462–464. [Google Scholar] [CrossRef]
  2. Pullaiah, T. Encyclopedia of World Medicinal Plants; Anantapur Regency Publication: AP Nagoor, New Delhi, India, 2003. [Google Scholar]
  3. Hummer, K.E.; Janick, J. Rubus iconography: Antiquity to the renaissance. Acta Hortic. 2007, 759, 89–105. [Google Scholar]
  4. Ahmad, S.; Ali, A.; Beg, H.; Dasti, A.A.; Shinwari, Z.K. Ethnobotanical studies on some medicinal plants of Booni Valley, District Chitral, and Pakistan. Pak. J. Weed Sci. 2006, 12, 183–190. [Google Scholar]
  5. Jan, G.; Khan, M.A.; Gul, F. Ethnomedicinal plants used against diarrhea and dysentery in Dir Kohistan valley (NWFP), Pakistan. Ethnobot. Leaf. 2008, 1, 84. [Google Scholar]
  6. Shah, G.M.; Khan, M.A. Common medicinal folk recipes of Siran valley, Mansehra, Pakistan. Ethnobot. Lea. 2006, 1, 5. [Google Scholar]
  7. Zabihullah, Q.; Rashid, A.; Akhtar, N. Ethnobotanical survey of Kot Manzary Baba valley, Malakand Agency, Pakistan. Pak. J. Pl. Sci. 2006, 12, 115–122. [Google Scholar]
  8. Sher, H.; Al-Yemeni, M.N.; Leonard, W.; Shah, A.J. Ethnopharmaceutically important medicinal plants and its utilization in traditional system of medicine, observation from the northern parts of Pakistan. J. Med. Plants Res. 2010, 4, 1853–1864. [Google Scholar]
  9. Ajaib, M.; Khan, Z.; Khan, N.; Wahab, M. Ethnobotanical studies on useful shrubs of district Kotli, Azad Jammu and Kashmir, Pakistan. Pak. J. Bot. 2010, 42, 1407–1415. [Google Scholar]
  10. Murad, W.; Ahmad, A.; Gilani, S.A.; Khan, M.A. Indigenous knowledge and folk use of medicinal plants by the tribal communities of Hazar Nao forest, Malakand District, North Pakistan. J. Med. Plants Res. 2011, 5, 1072–1086. [Google Scholar]
  11. Sher, H.; Hussain, F. Ethnobotanical evaluation of some plant resources in Northern part of Pakistan. Afr. J. Biotechnol.2009, 8, 4066–4076. [Google Scholar]
  12. Angiosperm Phylogeny. Available online: http://www.mobot.org/ (accessed on 1 November 2012).
  13. Romoleroux, K. Paramo: An Andean Ecosystem under Human Influence. In Rosaceae in the Paramos of Ecuador; Balslev, H., Luteyn, J.L., Eds.; Academic Press: London, UK, 1992; pp. 85–94. [Google Scholar]
  14. Marulanda, M.L.; López, A.M.; Aguilar, S.B. Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers. Crop Breed. App. Biotech. 2007, 7, 242–252. [Google Scholar] [CrossRef]
  15. Ling, G.T. Handbook of Natural Food Additives; Chemical Industry Press: Beijing, China, 2000; pp. 226–228. [Google Scholar]
  16. Bown, D. Encyclopaedia of Herbs and Their Uses; Dorling Kindersley: London, UK, 1995. [Google Scholar]
  17. Chiej, R. Encyclopaedia of Medicinal Plants; MacDonald and Company Limited Maxwell House: London, UK, 1984. [Google Scholar]
  18. Lust, J. The Herb Book; Bantam: New York, NY, USA, 1983. [Google Scholar]
  19. Phillips, R.; Foy, N. Herbs; Pan Books Limited: London, UK, 1990. [Google Scholar]
  20. Malcolm, P. History of blackberry plants. Available online: http://www.approvedarticles.com/Article/History-Of-Blackberry-Plants/1480 (accessed on 5 November 2012).
  21. Plants for a Future. Available online: http://www.pfaf.org/user/Plant.aspx?LatinName=Rubus+fruticosus (accessed on 5 November 2012).
  22. Eyduran, S.P.; Eyduran, E.; Khawar, K.M.; Agaoglu, Y.S. Adaptation of eight American blackberry (Rubus fructicosusL.) cultivars for Central Anatolia. Afr. J. Biotech. 2008, 7, 2600–2604. [Google Scholar]
  23. Yilmaz, K.U.; Yasar, Z.; Ercisli, S.; Serce, S.; Gunduz, K.; Sengul, M.; Asma, B.M. Some selected physico-chemical characteristics of wild and cultivated blackberry fruits (Rubus fruticosus L.) from Turkey. Rom. Biotechnol. Lett. 2009, 14, 4152–4163. [Google Scholar]
  24. Milosevic, T.; Milosevic, N.; Glisic, I.; Mladenovic, J. Fruit quality attributes of blackberry grown under limited environmental conditions. Plant Soil Environ. 2012, 58, 322–327. [Google Scholar]
  25. Agaoglu, Y.S.; Eyduran, S.P.; Eyduran, E. Comparison of some pomological characteristics of blackberry cultivars growth in Ayas conditions. J. Agric. Sci. 2007, 13, 69–74. [Google Scholar]
  26. Cangi, R.; Islam, A. Adaptation of some blackberry cultivars to Ordu conditions. In Proceedings of the 1st Kiwifruit and Berry Fruit Symposium, Ordu, Turkey, Turkey, 8–12 September, 2003; pp. 348–352.
  27. Gercekcioglu, R.; Esmek, I.; Gunes, M.; Edizer, Y. Adaptation of some blackberry cultivars to Tokat conditions. In Proceedings of the 1st Kiwifruit and Berry Fruit Symposium, Ordu, Turkey, 8–12 September, 2003; pp. 337–343.
  28. Dimića, E.B.; Vujasinovićb, V.B.; Radočajc, O.F.; Pastor, O.P. Characteristics of blackberry and raspberry seeds and oils. Acta Period. Techn. 2012, 43, 1–9. [Google Scholar]
  29. Milosevic, T.; Mratinic, E.; Milosevic, N.; Glisic, I.; Mladenovic, J. Segregation of blackberry cultivars based on the fruit physico-Chemical attributes. Tar. Bil. Der. 2012, 18, 100–109. [Google Scholar]
  30. USDA National Nutrient Data Base. Available online: http://ndb.nal.usda.gov/ndb/foods/show/2180 (accessed on 5 February 2014).
  31. Stajčić, S.M.; Tepić, A.N.; Djilas, S.M.; Šumić, Z.M.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Vulić, J.J.; Tumbas, V.T. Chemical composition and antioxidant activity of berry fruits. Acta Period.Techn. 2012, 43, 94–105. [Google Scholar]
  32. Denev, P.; Ciz, M.; Ambrozova, G.; Lojek, A.; Yanakieva, I.; Kratchanova, M. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 2010, 123, 1055–1061. [Google Scholar] [CrossRef]
  33. Kafkas, E.; Kosar, M.; Turemis, N.; Baser, K.H.C. Analysis of sugars, organic acids and vitamin C contents of blackberry genotypes from Turkey. Food Chem. 2006, 97, 732–736. [Google Scholar] [CrossRef]
  34. Milivojevic, J.; Maksimovic, V.; Nikolic, M.; Bogdanovic, J.; Maletic, R.; Milatovic, D. Chemical and antioxidant properties of cultivated and wild fragaria and rubus berries. J. Food Quality 2011, 34, 1–9. [Google Scholar] [CrossRef]
  35. Haminiuk, C.W.I.; Sierakowski, M.R.; Branco, I.G.; Maciel, G.M.; Masson, M.L. Rheological study of ternary mixtures and pectic gels of red fruit pulps. Int. J. Food Sci. Technol. 2006, 42, 629–639. [Google Scholar]
  36. Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
  37. Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef]
  38. Stoner, G.D.; Chen, T.; Kresty, L.A.; Robeena, M.A.; Reinemann, T.; Nines, R. Protection against esophageal cancer in rodents with lyophilized berries: Potential mechanisms. Nutr. Cancer 2006, 54, 33–46. [Google Scholar] [CrossRef]
  39. tefănuţ, M.N.; Căta, A.; Pop, R.; Tănasie, C.; Boc, D.; Ienaşcu, I.; Ordodi, V. Anti-hyperglycemic effect of bilberry, blackberry and mulberry ultrasonic extracts on diabetic rats. Plant Foods Hum. Nutr. 2013, 68, 378–384. [Google Scholar] [CrossRef]
  40. Radocaj, O.; Vujasinovic, V.; Dimic, E.; Basi, Z. Blackberry (Rubus fruticosus L.) and raspberry (Rubus idaeus L.) seed oils extracted from dried press pomace after longterm frozen storage of berries can be used as functional food ingredients. Eur. J. Lipid Sci. Technol. 2014, 116, 1–10. [Google Scholar] [CrossRef]
  41. Liu, S.Y.; Shieh, J.P.; Tzeng, J.I.; Chia-Hui, H.; Cheng, Y.L.; Huang, K.L.; Wang, J.J. Novel depots of ketorolac esters have long-acting antinociceptive and anti-inflammatory effects. Anesth. Analg. 2005, 101, 785–92. [Google Scholar] [CrossRef]
  42. Adhikari, P.; Hwang, K.T.; Shin, M.K.; Lee, B.K.; Kim, S.K.; Kim, S.Y.; Lee, K.T.; Kim, S.Z. Tocols in caneberry seed oils. Food Chem. 2008, 111, 687–690. [Google Scholar]
  43. Hoed, V.V.; Clercq, N.D.; Echim, C.; Andjelkovic, M.; Leber, E.; Dewettinck, K.; Verhe, R. Berry seeds: A source of specialty oils with high content of bioactives and nutritional value. J. Food Lipid 2009, 16, 33–49. [Google Scholar] [CrossRef]
  44. Mazur, W.M.; Uehara, M.; Wahala, K.; Adlercreutz, H. Phyto-oestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberry-meal in human subjects. Brit. J. Nutr. 2000, 83, 381–387. [Google Scholar]
  45. Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar]
  46. Wyttenbach, A.; Furrer, V.; Schleppi, P.; Tobler, L. Rare earth elements in soil and in soil-grown plants. Plant Soil. 1998, 199, 267–273. [Google Scholar] [CrossRef]
  47. Toth, A.; Braun, M.; Toth, Z.S.; Gor, D.; Lakatos, G.Y. Element composition of Rosa canina and Rubus fruticosus fruits at an abandoned metalliferous minesite in N-Hungary. Cereal Res. Commun. 2008, 36, 1655–1658. [Google Scholar]
  48. Rotundo, A.; Bounous, G.; Benvenuti, S.; Vampa, G.; Melegari, M.; Soragni, F. Quality and yield of Ribes and Rubuscultivars grown in Southern Italy hilly location. Phytother. Res. 1998, 12, S135–S137. [Google Scholar] [CrossRef]
  49. Hassimotto, N.M.A.; Pinto, M.D.S.; Lajolo, F.M. Antioxidant status in humans after consumption of blackberry (Rubus fruticosus L.) juices with and without defatted milk. J. Agric. Food Chem. 2008, 56, 11727–11733. [Google Scholar] [CrossRef]
  50. Radovanović, B.C.; Anđelković, A.S.M.; Radovanović, A.B.; Anđelković, M.Z. Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in southeast Serbia. Trop. J. Pharm. Res. 2013, 12, 813–819. [Google Scholar]
  51. Gudej, J.; Tomczyk, M. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch. Pharm. Res. 2004, 27, 1114–1119. [Google Scholar] [CrossRef]
  52. Sanjust, E.; Mocci, G.; Zucca, P.; Rescigno, A. Mediterranean shrubs as potential antioxidant sources. Nat. Prod. Res.2008, 22, 689–708. [Google Scholar] [CrossRef]
  53. Henning, W. Flavonol glycosides of strawberries (Fragaria x ananassa Duch.), raspberries (Rubus idaeus L.) and blackberries (Rubus fruticosus L.) 14 phenolics of fruits. Z. Lebensm. Unters. For. 1981, 173, 180–187. [Google Scholar] [CrossRef]
  54. Lei, Z.; Jervis, J.; Helm, R.F. Use of methanolysis for the determination of total ellagic and gallic acid contents of wood and food products. J. Agric. Food Chem. 2001, 49, 1165–1168. [Google Scholar] [CrossRef]
  55. Carlsen, H.; Myhrstad, M.C.W.; Thoresen, M.; Moskaug, J.O.; Blomhoff, R. Berry intake increases the activity of the gamma-glutamylcysteine synthetase promoter in transgenic reporter mice. J. Nutr. 2003, 133, 2137–2140. [Google Scholar]
  56. Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef]
  57. Mazza, G.; Miniati, E. Anthocyanins in Fruits, Vegetables, and Grains; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
  58. Wu, X.; Prior, R.L. Systematic identification and characterization of anthocyanins by HPLC–ESI–MS/MS in common foods in the United States: fruits and berries. J. Agric. Food Chem. 2005, 53, 2589–2599. [Google Scholar] [CrossRef]
  59. Dugo, P.; Mondello, L.; Errante, G.; Zappia, G.; Dugo, G. Identification of anthocyanins in berries by narrow-bore high-performance liquid chromatography with electrospray ionization detection. J. Agric. Food Chem. 2001, 49, 3987–3992. [Google Scholar] [CrossRef]
  60. Fan-Chiang, H.J.; Wrolstad, R.E. Anthocyanin pigment composition of blackberries. J. Food Sci. 2005, 70, C198–C202. [Google Scholar] [CrossRef]
  61. Markides, P. Anthocyanins as Food Colors; Academic Press: London, UK, 1982. [Google Scholar]
  62. Stintzing, F.C.; Stintzing, A.S.; Carele, R.; Frei, B.; Wrolstad, R.E. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J. Agric. Food Chem. 2002, 50, 6172–6181. [Google Scholar] [CrossRef]
  63. Ogawa, K.; Sakakibara, H.; Iwata, R.; Ishii, T.; Sato, T.; Goda, T.; Shimoi, K.; Kumazawa, S. Anthocyanin composition and antioxidant activity of the Crowberry (Empetrum nigrum) and other Berries. J. Agric. Food Chem. 2008, 56, 4457–4462. [Google Scholar] [CrossRef]
  64. Elisia, I.; Kitts, D.D. Anthocyanins inhibit peroxyl radical-induced apoptosis in Caco-2 cells. Mol. Cell Biochem. 2008, 312, 139–145. [Google Scholar] [CrossRef]
  65. Talavera, S.; Felgines, C.; Texier, O.; Besson, C.; Gil-Izquierdo, A.; Lamaison, J.L.; Remesy, C. Anthocyanin metabolism in rats and their distribution to digestive area, kidney and brain. J. Agric. Food Chem. 2005, 53, 3902–3908. [Google Scholar] [CrossRef]
  66. Robinson, G.M.; Robinson, R. A survey of anthocyanins. Biochem. J. 1932, 26, 1647. [Google Scholar]
  67. Benvenuti, S.; Pellati, F.; Melegari, M.; Bertelli, D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004, 69, FCT164–FCT169. [Google Scholar]
  68. Jiao, H.; Wang, S. Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. J. Agric. Food Chem. 2000, 48, 5672–5676. [Google Scholar] [CrossRef]
  69. Wang, S.Y.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
  70. Heinonen, I.M.; Meyer, A.S.; Frankel, E.N. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J. Agric. Food Chem. 1998, 46, 4107–4112. [Google Scholar] [CrossRef]
  71. Costantino, L.; Albasini, A.; Rastelli, G.; Benvenuti, S. Activity of polyphenolic crude extracts as scavengers of superoxide radicals and inhibitors of xanthine oxidase. Planta Med. 1992, 58, 342–344. [Google Scholar] [CrossRef]
  72. Romero Rodriguez, M.A.; Vazquez Oderiz, M.L.; Lopez Hernandez, J.; Simal Lozano, J. Determination of vitamin C and organic acids in various fruits by HPLC. J. Chromatogr. Sci. 1992, 30, 433–437. [Google Scholar] [CrossRef]
  73. Marinova, D.; Ribarova, F. HPLC determination of carotenoids in Bulgarian berries. J. Food Compos. Anal. 2007, 20, 370–374. [Google Scholar] [CrossRef]
  74. Rutz, J.K.; Voss, G.B.; Zambiazi, R.C. Influence of the degree of maturation on the bioactive compounds in blackberry (Rubus spp.) cv. Tupy. Food Nutr. Sci. 2012, 3, 1453–1460. [Google Scholar] [CrossRef]
  75. Turemis, N.; Kafkas, E.; Kafkas, S.; Kurkcuoglu, M.; Baser, K.H.C. Determination of aroma compounds in blackberry by GC/MS analysis. Chem. Nat. Compd. 2003, 39, 174–176. [Google Scholar] [CrossRef]
  76. Mukherjee, M.; Ghatak, K.L.; Ganguly, S.N.; Antoulas, S. Rubinic acid, a triterpene acid from Rubus fruticosus. Phytochemistry 1984, 23, 2581–2582. [Google Scholar] [CrossRef]
  77. Sarkar, A.; Ganguly, S.N. Rubitic acid, a new triterpene acid from Rubus fruticosus. Phytochemistry 1978, 17, 1983–1985. [Google Scholar] [CrossRef]
  78. Connolly, T.J. Newberry Crater: A ten-thousand-year record of human occupation and environmental change in the basin-plateau borderlands. Plains Anthropol. 2003, 48, 168–170. [Google Scholar]
  79. Littre, E. Oeuvres completes d’Hippocrate. In Traduction Nouvelle avec le texte Grec en Regard; Adolf M. Hakkert: Amsterdam, The Netherlands, 1979; Volume 7, pp. 217–417. [Google Scholar]
  80. Chevallier, A. The Encyclopedia of Medicinal Plants; Dorling Kindersley: London, UK, 1996. [Google Scholar]
  81. Blumenthal, M. The Complete German Commission E Monographs; American Botanical Council: Austin, TX, USA, 1998. [Google Scholar]
  82. Guarrera, P.M. Food medicine and minor nourishment in the folk traditions of Central Italy (Marche, Abruzzo and Latium). Fitoterapia 2003, 74, 515–544. [Google Scholar] [CrossRef]
  83. Chopra, R.N.; Nayar, S.L.; Chopra, R.C. Glossary of Indian Medicinal Plants; Council of Scientific and Industrial Research: New Delhi, India, 1956. [Google Scholar]
  84. Rios, J.L.; Recio, M.C.; Villar, A. Antimicrobial activity of selected plants employed in the Spanish mediterranean area. J. Ethnopharmacol. 1987, 21, 139–152. [Google Scholar] [CrossRef]
  85. Viegi, L.; Pieroni, A.; Guarrera, P.M.; Vangelisti, R. A review of plants used in folk veterinary medicine in Italy as basis for a databank. J. Ethnopharmacol. 2003, 89, 221–244. [Google Scholar] [CrossRef]
  86. Leonti, M.; Casu, L.; Sanna, F.; Bonsignore, L. A comparison of medicinal plant use in Sardinia and Sicily—De Materia Medica revisited? J. Ethnopharmacol. 2009, 121, 255–267. [Google Scholar] [CrossRef]
  87. Grieve, M. A modern herbal. In Penguin Books; Dover Publications Inc.: London, UK, 1984. [Google Scholar]
  88. Riaz, M.; Ahmad, M.; Rahman, N. Antimicrobial screening of fruit, leaves, root and stem of Rubus fruticosus L. J. Med. Plants Res. 2011, 5, 5920–5924. [Google Scholar]
  89. Krisch, J.; Galgoczy, L.; Tolgyesi, M.; Papp, T.; Vagvolgyi, C. Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta Biol. Szeged. 2008, 52, 267–270. [Google Scholar]
  90. Cavanagh, H.M.A.; Hipwel, M.L.; Wilkinson, J.M. Antibacterial activity of berry fruits used for culinary purposes. J. Med. Food 2003, 6, 57–61. [Google Scholar] [CrossRef]
  91. Abachi, S.; Khademi, F.; Fatemi, H.; Malekzadeh, F. Study of antibacterial activity of selected Iranian plant extracts on Helicobacter pylori. IOSR J. Dental Med. Sci. 2013, 5, 155–159. [Google Scholar]
  92. Yang, H.; Hewes, D.; Salaheen, S.; Federman, C.; Biswas, D. Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control 2014, 37, 15–20. [Google Scholar]
  93. Salaheen, S.; Nguyen, C.; Hewes, D.; Biswas, D. Cheap extraction of antibacterial compounds of berry pomace and their mode of action against the pathogen Campylobacter jejuni. Food Control 2014, 46, 174–181. [Google Scholar] [CrossRef]
  94. Buricova, L.; Andjelkovic, M.; Cermakova, A.; Reblova, Z.; Jurcek, O.; Kolehmainen, E.; Verhe, R.; Kvasnicka, F. Antioxidant Capacity and Antioxidants of Strawberry, Blackberry, and Raspberry Leaves. Czech J. Food Sci. 2011, 29, 181–189. [Google Scholar]
  95. Elisia, I.; Hu, C.; Popovich, D.G.; Kitts, D.D. Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chem. 2007, 101, 1052–1058. [Google Scholar] [CrossRef]
  96. Ding, M.; Feng, R.; Bowan, L.; Lu, Y.; Qian, Y.; Castranova, V.; Jiang, B.H.; Shi, X. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J. Biol. Chem. 2006, 281, 17359–17368. [Google Scholar]
  97. Halvorsen, B.L.; Holte, K.; Myhrstad, M.C.W.; Barikmo, I.; Hvattum, E.; Remberg, S.F.; Wold, A.B.; Haffner, K.; Baugerod, H.; Andersen, L.F.; et al. A systematic screening of total antioxidants in dietary. J. Nutr. 2002, 132, 461–471. [Google Scholar]
  98. Sun, J.; Chu, Y.F.; Wu, X.; Liu, R.H. Antioxidant and antiproliferation activities of fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
  99. Wang, S.Y.; Bowman, L.; Ding, M. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chem. 2008, 107, 1261–1269. [Google Scholar]
  100. Ivanovic, J.; Tadic, V.; Dimitrijevic, S.; Stamenic, M.; Petrovic, S.; Zizovic, I. Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Cacanska Bestrna”. Indust. Crop. Prod. 2014, 53, 274–281. [Google Scholar] [CrossRef]
  101. Tate, P.; Stanner, A.; Shields, K.; Smith, S.; Larcom, L. Blackberry extracts inhibit UV-induced mutagenesis in Salmonella typhimurium TA100. Nutr. Res. 2006, 26, 100–104. [Google Scholar] [CrossRef]
  102. Huang, W.; Zhang, H.; Liu, W.; Li, C. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B 2012, 13, 94–102. [Google Scholar] [CrossRef]
  103. Samec, D.; Piljac-Žegarac, J. Postharvest stability of antioxidant compounds in hawthorn and cornelian cherries at room and refrigerator temperatures-comparison with blackberries, white and red grapes. Scientia Horti. 2011, 131, 15–21. [Google Scholar] [CrossRef]
  104. Najda, A.; Łabuda, H. Content of phenolic compounds and antioxidant properties of fruits of selected orchard shrub species. Mod. Phytomorp. 2013, 3, 105–109. [Google Scholar]
  105. Salehi, P.; Asghari, B.; Esmaeili, M.A.; Dehghan, H.; Ghazi, I. α-Glucosidase and α-amylase inhibitory effect and antioxidant activity of ten plant extracts traditionally used in Iran for diabetes. J. Med. Plant. Res. 2013, 7, 257–266. [Google Scholar]
  106. Sokoł-Łetowska, A.; Kucharska, A.Z.; Winska, K.; Szumny, A.; Nawirska-Olszanska, A.; Mizgier, P.; Wyspianska, D. Composition and antioxidant activity of red fruit liqueurs. Food Chem. 2014, 157, 533–539. [Google Scholar] [CrossRef]
  107. Saponjac, V.T.; Vilaplana, A.G.; Djilas, S.; Mena, P.; Cetkovic, G.; Moreno, D.A.; Canadanovic-Brunet, J.; Vuli, J.; Stajcica, S.; Krunic, M. Anthocyanin profiles and biological properties of caneberry (Rubus spp.) press residues. J. Sci. Food Agric. 2014. in press. [Google Scholar]
  108. Dembinska-Kiec, A.; Mykkanen, O.; Kiec-Wilk, B.; Mykkanen, H. Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr. 2008, 99, 109–117. [Google Scholar]
  109. Marquina, M.A.; Corao, G.M.; Araujo, L.; Buitrago, D.; Sosa, M. Hyaluronidase inhibitory activity form the polyphenols in the fruit of blackberry (Rubus fruticosus B.). Fitoterapia 2002, 73, 727–729. [Google Scholar] [CrossRef]
  110. Nakakara, K.; Miyagawa, K.; Kodama, T.; Fujii, W. Hyaluronidase Inhibitor Containing God-Type Ellagitannin as Active Ingredient. U.S. Patent US 5843911, 21 August 1998. [Google Scholar]
  111. Randolph, R.K.; Roh-schmidt, H. Cytokine Modulators and Related Methods of Use. U.S. Patent US 11/508343, 08 February 2007. [Google Scholar]
  112. Pergola, C.; Rossi, A.; Dugo, P.; Cuzzocrea, S.; Sautebin, L. Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide 2006, 15, 30–39. [Google Scholar] [CrossRef]
  113. Koch, E.; Stumpf, K.H. Active Ingredient Combination of ω-3-Fatty Acid-Containing Oils and Polyphenol-Containing Plant Extracts for Use in the Prophylaxis and Treatment of Diseases. Germani GER DE10315025, 14 October 2004. [Google Scholar]
  114. Sangiovanni, E.; Vrhovsek, U.; Rossoni, G.; Colombo, E.; Brunelli, C.; Brembati, L.; Trivulzio, S.; Gasperotti, M.; Mattivi, F.; Bosisio, E.; et al. Ellagitannins from Rubus berries for the control of gastric inflammation: In vitro and in vivostudies. PLoS One 2013, 8, e71762. [Google Scholar] [CrossRef]
  115. Buyukbalci, A.; Sedef, N.E. Determination of in vitro anti-diabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods Hum. Nutr. 2008, 63, 27–33. [Google Scholar]
  116. Xu, Y.; Zhang, Y.; Chen, M. Effective fractions of Rubus fruticosus leaf, its pharmaceutical composition and uses for prevention and treatment of diabetes. China CN1788755, 21 June 2006. [Google Scholar]
  117. Jouad, H.; Maghrani, M.; Eddouks, M. Hypoglycaemic effect of Rubus fructicosis L. and Globularia alypum L. in normal and Streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2002, 81, 351–356. [Google Scholar] [CrossRef]
  118. Castro, V.R.O.E. Chromium and zinc in a series of plants used in Portugal in the herbal treatment of non- insulin diabetes. Acta Aliment. Hung. 2001, 30, 333–342. [Google Scholar] [CrossRef]
  119. Alonso, R.; Cadavid, I.; Calleja, J.M. A preliminary study of hypoglycemic activity of Rubus fruticosus. Planta Med.1980, 40, 102–106. [Google Scholar] [CrossRef]
  120. Sharaf, A.A.; Hussein, A.M.; Mansour, M.Y. The antidiabetic effect of some plants. Planta Med. 1963, 11, 159–168. [Google Scholar] [CrossRef]
  121. Shimizu, K.; Nagatsuka, Y.; Osawa, K.; Ando, T.; Shimura, S. The composition of food and drink used as medicine against anti- influenza Virus. Jpn. Kokai Tokkyo Koho JP2004059463, 26 February 2004. [Google Scholar]
  122. Corao, G.M.; Marquina, M.; Buitrago, D.; Araujo, L.; Sosa, M.; Araujo, L.; Buitrago, Y.D. “Actividad antiviral de la mora Antiviral activity of blackberries (Rubus fruticosus B.) mediante electroforesis en geles”. (Rubus fruticosus B.) by gel electrophoresis. Revista Latinoamericana de Química. Rev. Lat. Am. Quim. 2002, 30, 17–23. [Google Scholar]
  123. Riaz, M.; Zia-Ul-Haq, M.; Ur-Rahman, N.; Ahmad, M. Neuropharmacological effects of methanolic extracts of Rubus fruticosus L. Turk. J. Med. Sci. 2014, 44, 454–460. [Google Scholar] [CrossRef]
  124. Ali, N.; Aleem, U.; Shah, S.W.A.; Shah, I.; Junaid, M.; Ahmed, G.; Ali, W.; Ghias, M. Acute toxicity, brine shrimp cytotoxicity, anthelmintic and relaxant potentials of fruits of Rubus fruticosus Agg. BMC Compl. Alter. Med. 2013, 13, 138. [Google Scholar] [CrossRef]
  125. Zhou, W. Method for Manufacturing Health Granules and Health Beverages from Natural Materials. China CN101133789, 5 March 2008. [Google Scholar]
  126. Grigson, G. The Englishman’s Flora; Helicon Publishing Ltd: Oxford, UK, 1996. [Google Scholar]
  127. Mazzio, E.; Deiab, S.; Park, K.; Soliman, K.F.A. High throughput screening to identify natural human monoamine oxidase b inhibitors. Phytother. Res. 2013, 27, 818–828. [Google Scholar] [CrossRef]
  128. Kizoulis, M.G.; Southall, M.; Tucker-samaras, S.D. Compositions and methods for treating signs of skin aging. U.S. Patent Patent US12/390102, 22 September 2010. [Google Scholar]
  129. Herrmann, M.; Grether-Beck, S.; Meyer, I.; Franke, H.; Joppe, H.; Krutmann, J.; Vielhaber, G. Blackberry leaf extract: a multifunctional anti-aging active. Int. J. Cosmetic Sci. 2007, 29, 411. [Google Scholar] [CrossRef]
  130. Vielhaber, G.; Herrmann, M.; Meyer, I.; Joppe, H. Blackberry Leaf Extract as an Active Ingredient against Skin Irritations and Inflammations. WO2007063087, 19 May 2007. [Google Scholar]
  131. Takase, T.; Narise, A.; Kikuchi, S.; Osawa, K. Deodorizing Composition Using Peroxidase under Neutrality. U.S. Patent 20110135787, 21 October 2011. [Google Scholar]
  132. Shimizu, K.; Maeda, Y.; Osawa, K.; Shimura, S. Deodorants for Allyl Methyl Monosulfide, and Foods, Beverages and Deodorant Compositions Containing Them. Jpn. Kokai Tokkyo Koho JP JP 2002–139226, 20020514, 2003. [Google Scholar]
  133. Greenway, F.L.; Liu, Z.; Woltering, E.A. Angiogenic Agents from Plant Extracts, Gallic Acid and Derivatives. U.S. Patent 20070031332, 8 February 2007. [Google Scholar]
  134. Ninova, P.; Lambev, I.; Simeonova, K.; Krushkov, I.; Zhelyazkov, D.; Leseva, M.; Toneva, M. Study of the diuretic and hypoazotemic combination, Nephroton extracted from Bulgarian medicinal plants. Probl. Vutresh. Med. 1980, 8, 124–131. [Google Scholar]
  135. Grigore, E.; Mihale, I. Compositions for treating digestive disorders of claves and piglets. Rom. RO 1981, 75, 752. [Google Scholar]
  136. Abbruzzo, I. Anticaries Toothpaste Containing Rubus Fruticosus for Treating and Cleaning Teeth and Gums. European EP1683547, 26 July 2006. [Google Scholar]


Raspberry / Monografie Drugs.com

Scientific Name(s): Rubus idaeus L. and Rubus strigosus Michx. Family: Rosaceae (roses)
Common Name(s): Red raspberry

Raspberry leaves may be helpful for diarrhea or as a mouthwash because of their astringent action. They have been used historically in painful or profuse menstruation and to regulate labor pains in childbirth, but there is little evidence to support this use.

Botany
The cultivated red raspberries Rubus idaeus (Eurasian) or R. strigosus (North American, also known as R. idaeus var. strigosus ) are two of many Rubus species worldwide. While the berries are cultivated as food items, it is the leaves that have been used medicinally. Raspberries grow as brambles with thorny canes bearing three-toothed leaflets and stalked white flowers with five petals. The red berries detach easily from their cores when ripe. While some species of Rubus primarily reproduce clonally and commercial red raspberries are propagated as clones, DNA fingerprinting has indicated that wild R. idaeus populations exhibit substantial genetic diversity. 1

History
The leaves of red raspberry were used for their astringent properties to treat diarrhea in the 19th century. A strong tea of raspberry leaves was used in painful or profuse menstruation and to regulate labor pains in childbirth. 2 The Eclectics used a decoction of the leaves to suppress nausea and vomiting. A gargle of raspberry leaf infusion has been used for sore throats and mouths and to wash wounds and ulcers. 3

Chemistry
While substantial effort has been devoted to the chemistry of raspberry fruit as a food item, relatively less has been published on the chemistry of the leaves. The principal compounds isolated from red raspberry leaves are hydrolyzable tannins. Simple compounds such as 1,2,6-tri-O -galloyl-glucose and penta- O -galloyl glucose 4 are oxidatively coupled through galloyl groups to form more complex compounds such as casuarictin, pendunculagin, sanguin H-6, 5 and lambertianin A, 6 with as many as 15 galloyl groups coupled to 3 glucose units. 7

Common flavonoids have also been isolated from the leaves of raspberry. Rutin was isolated, 8as were kaempferol, quercitin, quijaverin, and kaempferol-3- O -β-D-glucuronopyranoside. 9Major leaf volatiles studied by GC-MS include the monoterpenes geraniol and linalool as well as 1-octane-3-ol and decanal. 10 Phenolic acids common to the Rosaceae family have also been identified. 11

Raspberry Uses and Pharmacology
The tannin components of the leaves have a definite astringent action, 12 which may be helpful in diarrhea or as a mouthwash; however, there is little pharmacologic evidence at present to support the use of raspberry leaf tea in pregnancy, menstruation, or childbirth. Blackberry ( R. strigosus ) leaves, which have similar chemistry to raspberry leaves, have been found to have a slight hypoglycemic activity in rabbit models; however, the chemistry responsible for this effect was not elucidated. 13 , 14Animal data

A preliminary study found fractions of raspberry leaf extract that stimulated and relaxed uterine muscle in pregnant rats, but this must be confirmed. 15

Clinical data
Research reveals no clinical data regarding raspberry for any use.

Dosage
Typical doses of raspberry leaf as a tea are 1.5 to 2.4 g/day. A clinical trial has been conducted to define its safety in labor. 16

Pregnancy/Lactation
Documented adverse effects (including antigonatographic activity and stimulation of contraction in strips of pregnant human uterus). 17 , 18 , 19 Avoid use.

Adverse Reactions
Research reveals little or no information regarding adverse reactions with the use of this product.

Toxicology
There is no evidence that raspberry leaf tea is toxic.

A raspberry leaf monograph is included in the British Herbal Pharmacopeia , vol. 2. It is listed as unapproved in the German Commission E Monographs .

Bibliography
1. Antonius K, et al. DNA fingerprinting reveals significant amounts of genetic variation in a wild raspberry Rubus idaeus population. Mol Ecol 1994;3(2):177.
2. Erichsen-Brown C. Medicinal and Other Uses of North American Plants. Dover, NY. 1989:471-73.
3. Grieve M. A Modern Herbal . London, England: Jonathan Cape, 1931:671-72.
4. Haddock E, et al. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part Ι. Introduction. Naturally occurring galloyl esters. J Chem Soc 1982;11:2515.
5. Nonaka G, et al. A dimeric hydrolyzable tannin, Sanguin H-6 from Sanguisorba officinalis L. Chem Pharm Bull 1982;30(6):2255.
6. Tanaka T, et al. Tannins and related compounds. CXXII. New dimeric, trimeric and tetrameric ellagitannins, lambertianins A-D, from Rubus lambertianus Seringe. Chem Pharm Bull 1993;41(7):1214.
7. Gupta R, et al. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 2. Esters of (S)-hexahydroxydiphenic acid with D-glucopyranose ( 4 C 1 ). J Chem Soc 1982;11:2525.
8. Khabibullaeva L, et al. Phytochemical study of raspberry leaves. Mater Yubileinoi Resp Nauchn Konf Farm 1972;98. Chem Abs 1972;83:4960z.
9. Gudej J, et al. Flavonoid compounds from the leaves of Rubus idaeus L. Herba Pol 1996;42(4):257.
10. Maga J, et al. Bramble leaf volatiles. Dev Food Sci 1992;29:145.
11. Krzaczek T. Phenolic acids in some tannin drugs from the Rosaceae family. Farm Pol 1984;40(8):475. CA 102:146198s.
12. Haslam E, et al. Traditional herbal medicines — the role of polyphenols. Planta Med 1989;55:1.
13. Alonso R, et al. A preliminary study of hypoglycemic activity of Rubus fruticosus . Planta Med 1980;(Suppl):102.
14. Swanston-Flatt S, et al. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia 1990;33(8):462.
15. Briggs CJ, et al. Title unknown. Can Pharm J 1997:41.
16. Simpson M, Parsons M, Greenwood J, Wade K. Raspberry leaf in pregnancy: its safety and efficacy in labor. J Midwifery Womens Health . 2001;46:51-59.
17. Brinker FJ. Herb Contraindications and Drug Interactions . 2nd ed. Sandy, OR: Eclectic Medical Publications; 1998.
18. Newall CA, Anderson LA, Phillipson JD, eds. Herbal Medicines: A Guide for Health-Care Professionals . London: Pharmaceutical Press; 1996.
19. Ernst E. Herbal medicinal products during pregnancy: are they safe? BJOG . 2002;109:227-235.
20. British Herbal Pharmacopoeia . Bournemouth, Dorset: British Herbal Medicine Association, 1990.
21. Blumenthal M, et al. The Complete German Commission E Monographs . Austin, TX: American Botanical Council, 1998.



Rubus fructicosis / Pfaff Database
                                        
Edible Parts: Fruit;  Leaves;  Root.
Edible Uses: Tea.

Fruit - raw or cooked. The best forms have delicious fruits and, with a range of types, it is possible to obtain ripe fruits from late July to November. The fruit is also made into syrups, jams and other preserves. Some people find that if they eat the fruit before it is very ripe and quite soft then it can give them stomach upsets[K]. Root - cooked. The root should be neither to young nor too old and requires a lot of boiling. A tea is made from the dried leaves - the young leaves are best. The leaves are often used in herbal tea blends. Young shoots - raw. They are harvested as they emerge through the ground in the spring, peeled and then eaten in salads.

Medicinal Uses
Antidiarrhoeal;  Astringent;  Depurative;  Diuretic;  Tonic;  Vulnerary.
The root-bark and the leaves are strongly astringent, depurative, diuretic, tonic and vulnerary. They make an excellent remedy for dysentery, diarrhoea, haemorrhoids, cystitis etc, the root is the more astringent. Externally, they are used as a gargle to treat sore throats, mouth ulcers and gum inflammations. A decoction of the leaves is useful as a gargle in treating thrush and also makes a good general mouthwash

Other Uses
Dye;  Fibre;  Pioneer.
A purple to dull blue dye is obtained from the fruit. A fibre is obtained from the stem and used to make twine. Plants are spread by seed deposited in the droppings of birds and mammals. They often spring up in burnt-over, logged or abandoned land and make an excellent pioneer species, creating the right conditions for woodland trees to move in. The trees will often grow in the middle of a clump of blackberries, the prickly stems protecting them from rabbits.



Antioxidant Status in Humans after Consumption of Blackberry (Rubus fruticosus L.) Juices With and Without Defatted Milk
Neuza Mariko Aymoto Hassimotto , Márcia Da Silva Pinto and Franco Maria Lajolo *
Laboratório de Química, Bioquímica e Biologia Molecular de Alimentos, Departamento de Alimentos e Nutrição Experimental, FCF, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil
J. Agric. Food Chem., 2008, 56 (24), pp 11727–11733 December 3, 2008

The present study was designed to evaluate the possible effect of the consumption of blackberry juices (BJ) prepared with water (BJW) and defatted milk (BJM) on the plasma antioxidant capacity and the enzymatic and nonenzymatic antioxidants. A significant (p < 0.05) increase in the ascorbic acid content in the plasma was observed after intake of both BJs. However, no changes were observed in the plasma urate and α-tocopherol levels. An increase on the plasma antioxidant capacity, by ORAC assay, was observed only after consumption of BJW but not statistically significant. Plasma antioxidant capacity had a good positive correlation with ascorbic acid (r = 0.93) and a negative correlation with urate level (r = −0.79). No correlation was observed between antioxidant capacity and total cyanidin or total ellagic acid contents. Further, it was observed that plasma catalase increased following intake of BJ’s. No change was observed on the plasma and erythrocyte CAT and glutathione peroxidase activities. A significant decrease (p < 0.05) in the urinary antioxidant capacity between 1 and 4 h after intake of both BJs was observed. A good correlation was observed between total antioxidant capacity and urate and total cyanidin levels. These results suggested association between anthocyanin levels and CAT and a good correlation between antioxidant capacity and ascorbic acid in the human plasma after intake of BJs. Follow-up studies investigating the antioxidant properties and health benefits are necessary to demonstrate the health benefits of polyphenols.



Phytochemical research Rubus fructicosis
Blackberries contain numerous phytochemicals including polyphenols, flavonoids, anthocyanins, salicylic acid, ellagic acid, and fiber. Anthocyanins in blackberries are responsible for their rich dark color.
Blackberries contain salicylic acid and ellagic acid which has been associated in preliminary research with toxicity to cancer cells, including breast cancer cells.
Blackberries rank highly among fruits for in vitro antioxidant strength, particularly because of their dense content of polyphenolic compounds, such as ellagic acid, tannins, ellagitannins, quercetin, gallic acid, anthocyanins, and cyanidins. One report placed blackberry at the top of more than 1000 antioxidant foods consumed in the United States.

Nutrients
Blackberries are notable for their high nutritional contents of dietary fiber, vitamin C, vitamin K, and the essential mineral manganese.[8]
Blackberries have both soluble and insoluble fiber. One cup of blackberries (144 g) has an average of 7.6 g of fibre and contains half the daily recommended dose of vitamin C.[8] Dietary fiber is important in maintaining a healthy digestive system, as it supports regular bowel movements.

Nutrient content of seeds
Blackberries contain numerous large seeds that are not always preferred by consumers. The seeds contain oil rich in omega-3 (alpha-linolenic acid) and -6 fats (linoleic acid) as well as protein, dietary fiber, carotenoids, ellagitannins and ellagic acid.

^ Sellappan, S.; Akoh, C. C.; Krewer, G. (2002). "Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries". Journal of agricultural and food chemistry 50(8): 2432–2438. doi:10.1021/jf011097r. PMID 11929309. edit
^ a b c "Nutrition facts for raw blackberries". Nutritiondata.com. Conde Nast. 2012.
^ Dyer, M. (2010). What Are The Health Benefits Of Blackberries?
^ Ahn D, Putt D, Kresty L, Stoner GD, Fromm D, Hollenberg PF. (1996). "The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and phase II enzymes".Carcinogenesis 17 (4): 821–828. doi:10.1093/carcin/17.4.821. PMID 8625497.
^ Lesca, P. (1983). Protective effects of ellagic acid and other plant phenols on benzo[a]pyrene-induced neoplasia in mice.
^ Papoutsi Z. Kassi E. Tsiapara A. Fokialakis N. Chrousos GP. Moutsatsou P. (2005). "Evaluation of estrogenic/antiestrogenic activity of ellagic acid via the estrogen receptor subtypes ERalpha and ERbeta". Journal of Agricultural & Food Chemistry 53 (20): 7715.doi:10.1021/jf0510539.
^ Wada L, Ou B (June 2002). "Antioxidant activity and phenolic content of Oregon caneberries".Journal of Agricultural and Food Chemistry 50 (12): 3495–500. doi:10.1021/jf011405l.PMID 12033817.
^ Hager TJ, Howard LR, Liyanage R, Lay JO, Prior RL (February 2008). "Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS". Journal of Agricultural and Food Chemistry 56 (3): 661–9. doi:10.1021/jf071990b. PMID 18211030.
^ Halvorsen BL, Carlsen MH, Phillips KM, et al. (July 2006). "Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States". The American Journal of Clinical Nutrition 84 (1): 95–135. PMID 16825686.
^ Jakobsdottir, G.; Blanco, N.; Xu, J.; Ahrné, S.; Molin, G. R.; Sterner, O.; Nyman, M. (2013)."Formation of Short-Chain Fatty Acids, Excretion of Anthocyanins, and Microbial Diversity in Rats Fed Blackcurrants, Blackberries, and Raspberries". Journal of Nutrition and Metabolism2013: 1. doi:10.1155/2013/202534. PMC 3707259. edit
^ Bushman BS, Phillips B, Isbell T, Ou B, Crane JM, Knapp SJ (December 2004). "Chemical composition of caneberry (Rubus spp.) seeds and oils and their antioxidant potential". Journal of Agricultural and Food Chemistry 52 (26): 7982–7. doi:10.1021/jf049149a.PMID 15612785.


Rubus fructicosus / Mûre

Le terme « framboise » est apparu dans la langue française en 1140. Il vient du francique brambasia, qui signifie « mûre ». La première lettre est passée de « b » à « f » sous l'influence du mot « fraise ».
En principe, le terme « mûre » désigne le fruit d'un arbre (Morus) que l'on cultive en Europe, aux États-Unis et en Asie pour ses baies, de même que pour l'élevage du ver à soie. Toutefois, dans la langue populaire, « mûre » désigne également les fruits de plusieurs sous-arbrisseaux épineux du genre Rubus. Le mot est généralement synonyme de ronce. Mais ce dernier est beaucoup moins employé et appartient plutôt au langage scientifique. Le mot « ronce » est apparu en 1175, il vient du latin classique rûmex qui signifie « dard » en référence aux épines de la plante.

Les baies ont sans doute été les premiers aliments à être consommés par nos ancêtres chasseurs-cueilleurs, bien avant les grains et les herbes. On a retrouvé des vestiges de mûres dans les plus anciennes habitations humaines, excavées en Europe.

Le genre Rubus est probablement originaire de l'Asie Mineure, d’une région qui correspond aujourd’hui à la Turquie. De là seraient parties, dans des directions différentes, les diverses ramifications de son arbre généalogique. Il s'est établi sur tous les continents, à l'exception de l'Antarctique, et sous toutes les latitudes, depuis le cercle Arctique jusqu'aux tropiques.
En se dispersant, il s'est diversifié, présentant des fruits plus ou moins gros de couleur rouge, blanche, jaune et pourpre noir, à saveur plutôt sucrée ou acidulée selon les espèces. C'est l'un des genres les plus diversifiés du règne végétal. Il comprend plusieurs sous-genres, eux-mêmes parfois composés de nombreuses variétés. Il existe environ 200 espèces de framboisiers et plus d'une centaine de mûres, sans compter les nombreux cultivars que les humains ont créé.

Il faudra attendre les premiers siècles de notre ère avant qu'on ne domestique le framboisier et qu’on l'améliore de façon à ce qu'il produise de plus gros fruits. Les Romains, qui excellaient en agriculture, ont répandu sa culture dans toute l'Europe. À la fin du Moyen Âge, on cultivait des variétés à gros fruits rouges et jaunes, de même que des variétés sans épines. Quant à la framboise noire, elle ne pousse à l'état sauvage que dans l'est de l'Amérique du Nord et, à un moindre degré, dans l'ouest. Elle ne fera pas partie des efforts de sélection avant le XIXe siècle, probablement parce que le fruit sauvage était facile à récolter, mais également à cause de la popularité de la framboise rouge.
La mûre, employée en Europe depuis plus de 2 000 ans comme aliment, comme plante médicinale ou pour tenir les maraudeurs à distance, a suivi à peu près la même trajectoire. Des milliers de cultivars ont été créés, dont beaucoup sont des croisements entre la mûre et le framboisier ou entre diverses espèces de mûres. La mûre de Boysen, la mûre de Logan et la mûre de Young, sont aujourd'hui largement cultivées en divers endroits du globe.

Il existe au moins 25 espèces appartenant au genre Rubus. Les Amérindiens les appréciaient grandement. Ils faisaient sécher les baies ou les préservaient dans de la graisse de phoque ou un autre corps gras. Pour les peuples des régions nordiques, dont l'alimentation était essentiellement carnée, c'était là une formidable source de vitamine C.



Comments