Rhodiola rosea / Rozenwortel

RHODIOLA ROSEA 
Rozenwortel https://www.youtube.com/watch?v=Y_Pt54EkcxI

Algemene en Botanische Informatie 

Familie: Crassulaceae – Vetplantachtigen 
Naam: Arctic root (E.), Rozenwurz (D.), Rhodiole (F.) 
Soorten verwant aan de Sedum, vooral aan de Hemelsleutel – Sedum telephium 
verwante geslachten Sempervivum, Kalanchoe en Briophyllum 
Biotoop: Vooral in de koudere Noordelijke landen, Scandinavië en Rusland en in berggebieden boven 2000m, ook in de Alpen (Gran Paradiso). 
Niet inheems in Belgie Groeit op rotsranden, morenen en gestabiliseerde puinhellingen zowel op zure als op kalkrijke vrij vochtige, zanderige? grond tot 3000m hoogte. 
Etymologie: Crassus (lat.) = dik, dus dikbladigen, Rozenwortel omwille van de geur Rhodiola van rhodiolus, naar rozen riekend, rooskleurig 

Beschrijving: Pollenvormende vaste plant 10 tot 35 cm hoog, vette bladeren licht getand met dikwijls rose-purperen randen, bloemen donkergeel 4-tallig in dichte kluwens met lichte rozengeur, kokervruchten roodoranje. Wortelstokken opvallend en naar rozen reukend. 

Materia Medica, gebruikte delen van Rhodiola

Rhodiola radix en rhizoma, de wortel en wortelstok van Rhodiola rosea (L.) Scop. 

Oogst de 2 tot 4 jaar oude wortels worden in het najaar (september / oktober) geoogst, in stukken van 3 cm gesneden en bij een temperatuur van 30 à 40° met een goede luchtcirculatie gedroogd. 
Kwaliteit: Verschil tussen Russische en Chinese Rhodiola, en hoe is het met de Europese? 

Samenstelling 

** Phenolglycosiden rosavines: rosavie, rosine, rosarine 
** Salidrosides 
* looistoffen? 

Farmacologie 

** Adaptogeen: verbetert aanpassingsvermogen zowel lichamelijk als geestelijk verbetert de aanmaak van ATP adenosinetrifosfaat (Abidov) 
** Antidepressivum (beter dan Hypericum en Panax?) invloed op neurotransmitters: serotonine, dopamine...
* Invloed op geheugen
* Leverbeschermend bij intoxicatie 
* Invloed op vetmetabolisme (stimuleert hormoongevoelige lipase / Ramazanov 1999) 
* Afrodisiacum? 
* Huidverzachtend zoals Aloé en andere vetplanten (Huislook, Sedum) 

Indicatie, medicinaal gebruik

** Stress, vooral lichamelijk: bij zware handenarbeid, nachtwerk. 
** Bij duursporten, vooral wintersporten, verbetert aanpassing aan koude. 
* Hoogteziekte (+ Gingko biloba) 
* Seksuele asthenie, erectieproblemen (+ afrodisiaca) 
* Brandwonden, insectensteken en andere huidirritatie? 

Andere toepassingen 
Het blad werd, vooral in Rusland ook als groente gebruikt. 
Liefdesdranken: Volgens een legende uit de 13de eeuw zou een ukrainische prins Danila Galitsky de rozenwortel als afrodisiacum gebruikt hebben bij zijn Casanoviaanse avonturen. 
Zou ook door de Vikings gebruikt geweest zijn tijdens hun veroveringstochten. 

Receptuur en Bereidingswijzen
  • Drank uit Ukraine: Nastojka samengesteld uit gelijke gewichtsdelen van ethylalcohol 40° (wodka) met verse Rozenwortel, 2 weken laten trekken op kamertemperatuur (maceraat) 
  • Moedertinctuur 1:5 van verse wortel 
  • Wortel in honing 1:5 
Species / Kruidenmengsels: 
  • Rodiola + Trigonella foenum-graecum: anabolicum 
  • Rhodiola + Hypericum: antidepressivum 
  • Rhodiola + Hippophae 
Geschiedenis en Wetenschappelijk Onderzoek 
  • Siberie - Boeket bij huwelijken om de vruchtbaarheid te verhogen 
  • Mongoolse doctors schreven het voor bij TBC en kanker 
  • Vikings: om lichamelijke kracht en weerstan te verhogen 
  • 'Tibetan rhodiola has become so popular in recent years that, according to a survey by the Tibet Institute of Biology, 10,000 tons of it are collected annually and six factories make products that have rhodiola as a key ingredient (or sole ingredient). Rather than relying on its traditional applications, rhodiola is presented as a health product of general benefit, described as an adaptogen.' (Arctic Root - Germano en Ramazanov) 
  • Russische atleten en kosmonauten gebruikten Rhodiola 
  • Linnaeus: beschreef R. als een adstringentium en voor hernia, witte vloed, hysterie en hoofdpijn. Materia medica. Liber I. De Plantis (1749) 
  • Krylov 1961 botanist, identificeerde in de Altai mountains de 'golden root' als Rhodiola rosea 
Onderzoek Tibet: 'Much of the research on rhodiola has been carried out in Lhasa. The Tibet Institute of High Altitude Biology has done research with rhodiola and confirmed that it is of benefit as an adaptogen, including use against mountain sickness. A capsule with rhodiola and hippophae (plus lycium fruit) is produced by one factory and is promoted as a treatment for altitude sickness. In Chengdu, the West China University of Medical Sciences undertook a review of the research on this herb, which was published in 1988, evaluating 90 reports on the botany, chemistry, pharmacology, toxicology, and clinical effects. They reported that hongjingtian was obtained from the root and rhizome of several species of Rhodiola, with studies conducted on the constituents of 20 of China's 70 species. The active constituents include numerous flavonoids (such as quercetin, rutin, and kaempferol), condensed flavonoids (polyphenols, mainly gallic acid and epigallocatechin), cyanoglycosides (which have histamine-inhibiting activity), and salidroside, which is deemed one of the main active constituents of interest by virtually all authorities. In concentrated extracts of rhodiola, salidroside makes up about 1-2% of the content. Salidroside is comprised of tyrosol linked to glucose; tyrosol is one of the major flavors and aroma ingredients of the olive which confers notable antioxidant activity to olive oil. Rhodiola also contains sterols, notably daucosterol and sitosterol'. 

Wetenschappelijk onderzoek 
  • Abidov M., F. Crendal, S. Grachev, R. Seifulla, T. Ziegenfuss. Effect of Extracts from Rhodiola Rosea and Rhodiola Crenulata (Crassulaceae) Roots on ATP Content in Mitochondria of Skeletal Muscles. Bulletin of Experimental Biology and Medicine, Vol. 136, No. 6, December, 2003, 585-587. 
  • Bocharova OA et.al. (1995) "The effect of a Rhodiola rosea extract on the incidence of recurrences of a superficial bladder cancer (experimental clinical research)" Urol Nefrol (Mosk) Mar-Apr (2): 46-7 
  • Duhan, O.M. et al. (1999) "The antimutagenic activity of biomass extracts from the cultured cells of medicinal plants in the Ames test" Tsitol Genet Nov-Dec 33(6): 19-25 
  • Germano, C. et al. (1999) "Arctic root. The powerful new ginseng alternative" Kensington Publ.Corp. 
  • Krasnov e.a. – Effet stimulant des préparation a base d’ espèces de Rhodiola. Rastit. Resur. 14 (1978) 
  • Krasnov e.a. – Etude chimiosystématique des espèces du genre Rhodiola. Rastit. Resur.14 
  • Linh PT et.al. (2000) "Quantitative determination of salidroside and thyrosol from the underground part of Rhodiola rosea by high performance liquid chromatography" Arch Pharm Res Aug 23(4): 349-52 
  • Lismanov e.a. – The anti-arrhytmia effect of R. rosea and its possible mechanism. Bull. Eksp. Biol. Med. 116 (1993) 
  • Maslova L.V. et al. (1994) "The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress" Eksp Klin Farmakol 57(6): 61-6 
  • Petkov, V.D. et. al. (1986) "Effects of alcohol aqueous extract from Rhodiola rosea L. roots on learning and memory" Acta Physiol Pharmacol Bulg 12(1): 3-16 
  • Salikhova RA et.al. (1997) "Effect of Rhodiola rosea on the yield of mutation alteration and DNA repair in bone marrow cells". Patol Fiziol Exsp Ter Oct-Dec (4): 22-4 
  • Tolonen A, Pakonen M, Hohtola A, Jalonen J. Phenylpropanoid glycosides from Rhodiola rosea. Chem Pharm Bull (Tokyo). 2003 Apr;51(4):467-70. 
  • Udintsev SN; et.al. (1991) "The role of humoral factors of regenerating liver in the development of experimental tumours and the effect of Rhodiola rosea extract on this process" Neoplasma;38(3): 323-31 
  • Zakir Ramazanov, Z. et al. (1999) "New secrets of effective natural stress and weight management, using Rhodiola rosea and Rhodendron caucasicum" ATN/Safe Goods Publishing, CT. 
  • Zhang e.a. – Effect of R. kirilowii Maxim. on preventing high altitude reactions. A comparison of cardiopulmonary function in villagers at various altitudes. J. of chinese Med. 14 (1989) 
Algemene literatuur (doc. Maurice Godefridi) 
  • Drogen mit ‘Adaptogenwirkung’ zur Starking der Widerstandskrafte. H. Wagner, H. Norr und H. Winterhoff. Ztschr. fur Phytotherapie 13, 42 – 54 (1992) 
  • Les cultures médicinales canadiennes. E. Small en P. Catling. Rhodiola rosea (163 – 167) 
  • Artic Root, the powerfull new Ginseng alternative. C. Germano en Z. Ramazanov (1999) 
  • Rhodiola: Not just another Adaptogen. Vitamin Retailer. August 1998 
  • Rhodiola – De Ginseng van de 21ste eeuw. Folder Solgar 
  • http://www.bio-synergy.com/articles/rhodiola.html over clinical research of R. rosea on healthy people 
  • Rhodiola rosea (Russian rhodiola) - Anti-aging medicine of 21st Century


Extracten van de wortels van de Rhodiola vergroten het uithoudingsvermogen en werken mogelijk ook anabool. 

Dat ontdekten Russische onderzoekers. Het plantje verhoogt de concentratie van het energiefosfaat ATP in de spiercel.
In het Noorden van Eurazië groeien verschillende rhodiolasoorten. Kruidengenezers gebruiken een aantal daarvan zijn al eeuwen als adaptogenen: om perioden van fysieke en psychologische stress verlichten.

Uit onderzoeken blijkt dat ze de aanmaak van neurotransmitters in de hersenen verhogen. Uit onderzoeken zou ook blijken dat Rhodiola positieve effecten heeft op de spiergroei, het uithoudingsvermogen van duuratleten en het herstel van het hart na inspanning. Ik formuleer voorzichtig, want het gros van al die studies is verschenen in ontoegankelijke Russische literatuur - en kwam ook nog eens tot stand onder het communistische regime, waarin de partij voorschreef wat onderzoekers moesten ontdekken. 

De studie waarover dit stukje gaat is een uitzondering. De onderzoekers publiceerden hem onlangs in de Bulletin of Experimental Biology and Medicine, een Russisch tijdschrift dat ook verschijnt het Engels. De auteurs beschrijven daarin een proef met ratten, die twee verschillende Rhodiolapreparaten kregen. Een controlegroep kreeg niets, een andere kreeg een extract van Rhodiola crenulata, weer een andere een extract van Rhodiola rosea.

R. crenulata bevat hoge concentraties van de stof salidroside. De onderzoekers verkregen het extract uit wortels, die waren opgestuurd door Chinese collega's. Die hadden de wortels geoogst aan het einde van de bloeiperiode, ze in stukjes gesneden en ze gedroogd in een kamer met een temperatuur van dertig graden. Daarna hadden ze met alcohol de stoffen uit de plantendelen gehaald en de alcohol er uit gedestilleerd. Het extract bestond voor 3 procent uit salidroside.
Die stof zat ook in het extract van de R. rosea, maar minder dan in dat van de R. crenulata. In de R. rosea zaten ook een rosavines - rosavine, rosine en rosarine - en nog meer stoffen, maar daar keken de onderzoekers even niet naar.

De onderzoekers onderwierpen de ratten zes dagen lang aan een experiment waarbij ze de dieren eerst met een slangetje 50 milligram extract per kilogram lichaamsgewicht toedienden.
Dertig minuten later lieten ze de ratten met een gewichtje aan hun staart zwemmen in een aquarium. Als de dieren - na een half uur of zo - bijna verdronken visten ze de ratten uit het water. Dertig minuten later herhaalden ze de proef.
Na zes dagen slachtten de onderzoekers de dieren en onderzochten ze hun spiercellen. De ene helft van de dieren ging onder het mes vlak nadat hun laatste zwempartij erop zat, de andere helft kreeg nog een etmaal respijt.

Uit de spieren van de ratten haalden de Russen de mitochondria. Daarin bepaalden ze de concentratie ATP. R. rosea verhoogt de aanmaak van ATP. De ratten die Rhodiola rosea kregen hielden het in het water ook langer uit. Ratten die niks kregen bleven iets langer dan dertig minuten zwemmen. De Rhodiolaratten hielden het bijna drie kwartier uit. De ratten die de andere Rhodiolavariant hadden gekregen presteerden ongeveer hetzelfde als de ratten in de controlegroep.

1. M. Abidov, F. Crendal, S. Grachev, R. Seifulla, T. Ziegenfuss. Effect of Extracts from Rhodiola Rosea and Rhodiola Crenulata (Crassulaceae) Roots on ATP Content in Mitochondria of Skeletal Muscles. Bulletin of Experimental Biology and Medicine, Vol. 136, No. 6, December, 2003, 585-587.
2. Tolonen A, Pakonen M, Hohtola A, Jalonen J. Phenylpropanoid glycosides from Rhodiola rosea. Chem Pharm Bull (Tokyo). 2003 Apr;51(4):467-70. [PubMed] 


Rhodiolasupplement werkt maar....

Onderzoekers van The Cooper Institute hebben een supplement met Rhodiola rosea uitgetest op wielrenners. Zonder resultaat.
Het middel bevatte per drie capsules - de dagelijks in te nemen hoeveelheid - een gram Cordyceps sinensis, 300 milligram Rhodiola rosea, 200 microgram chroom en 800 milligram bestanddelen als calciumpyruvaat, natriumfosfaat, kaliumfosfaat, ribose en adenosine.
De Amerikanen keken onder meer naar de opname van zuurstof en de tijd die de renners op vol vermogen konden rijden. De gebruikers van het supplement scoorden op alle variabelen iets beter dan de renners in de controlegroep. De verschillen waren alleen net niet significant.

Earnest CP, Morss GM, Wyatt F, Jordan AN, Colson S, Church TS, Fitzgerald Y, Autrey L, Jurca R, Lucia A Effects of a commercial herbal-based formula on exercise performance in cyclists. Med Sci Sports Exerc. 2004 Mar;36(3):504-9. [PubMed] 



Rhodiola tegen asthenie, vermoeidheid, sporters en hypoxie
Atshenie is een toestand waarbij sprake is van algemene lichaamszwakte, krachteloosheid van spieren, concentratiestoornissen en kortademigheid, die soms gepaard gaat met hyperventilatie, hartkloppingen, prikkelbaarheid, duizelingen en angsten. In een onderzoek, onder mensen tussen 17 en 55 jaar oud met asthenie, meldde 64% van de deelnemers een gedeeltelijke of gehele verdwijning van de klinische symptomen, in combinatie met een toename van de arbeidsproductiviteit na suppletie met Rhodiola. Een ander onderzoek, waarbij deelnemers 50 mg Rhodiola extract kregen, liet vermindering van algemene zwakte, minder uitputting in de ochtend, en minder slaperigheid overdag zien (zonder enige bijwerking). De slaap verbeterde bij 67% van de deelnemers met slaapstoornissen (inslaapproblemen en onrustige slaap).
Testpersonen herstelden sneller na een zware lichamelijke inspanning. Het herstel van de lichamelijke en geestelijke prestaties vond sneller plaats en was aantoonbaar door indicatoren zoals polsslag, bloeddruk, spiersterkte en verbetering van de coordinatie. Een onderzoek liet na een grote lichamelijke inspanning een sneller normaliseren van het gehalte urinezuur en melkzuur in de spieren zien.
Onderzoeken over de gehele wereld met zwemmers, skiers en andere atleten hebben de waarde van Rhodiola als adaptogeen aangetoond; verb etering van het uithoudingsvermogen en een sneller herstel, zonder bijwerkingen. Er is zelfs een vergelijkend onderzoek uitgevoerd met Rhodiola en anabole steroiden, et gelijkwaardige uitkomsten, waarbij Rhodiola uiteraard niet de negatieve bijwerkingen op de bijnieren had.
Laboratoriumonderzoek bewijst de anabole werking van Rhodiola verder, door een toename van het lichaamsgewicht te laten zien, evenals een verbetering van de spier/vet ratio, een stijging van het hemoglobine en erytrocyten gehalte, een verhoging van het eiwitgehalte in het bloed en een vermindering van urinezuur en melkzuur.
Hypoxie is een toestand waarbij er sprake is van een verlaagde hoeveelheid zuurstof. Deze toestand komt voor bij sporters, maar ook bij mensen die op grote hoogte verkeren. Onderzoek door Zhang et al (1989 en 1990) heeft aangetoond dat Rhodiola schade door gebrek aan zuurstof voorkomt en de hart-long functies, bij mensen die op grote hoogte leven, verbetert.



Rhodiola bij depressiviteit en concentratiestoornissen
Depressiviteit kan een gevolg zijn van van meerdere oorzaken en een groot aantal fysiologische en psychologische processen. Er wordt verondersteld dat een depressie het gevolg is van een lage spiegel van serotonine en andere neurotransmitters in de hersenen. Neurotransmitters zijn de chemische boodschappers die de communicatie tussen zenuwcellen verzorgen. Serotonine heeft een eenvoudige chemische structuur, maar zeer complexe farmacologische eigenschappen. Het speelt een rol bij het gedrag, de stemming, de eetlust, slaap, geheugen en het leren.
De voorloper van serotonine is 5-hydroxy tryptofaan (5-HTP, aangemaakt uit het aminozuur tryptofaan). Na de productie van serotonine wordt 5-HTP door monoamine oxidase (MAO) en catechol-o-methyltransferase (COMT) afgebroken tot de inactieve stof 5-hydroxy-indoleazijnzuur. Een normaal serotonine gehalte is dus afhankelijk van de aanmaak van 5-HTP en de afbraak door MAO en COMT.
Uit ruim 35 jaar onderzoek blijkt dat Rhodiola het transport van 5-HTP verbetert en de activiteit van MAO en COMT vermindert, wat resulteert in een toename van serotonine in de hersenen met 30%.
Het toedienen van Rhodiola in combinatie met antidepressiva verkortte de duur van het verblijf in het ziekenhuis en verminderde de bijwerkingen die gepaard gaan met tricyclische antidepressiva. Een eenmalige dosis van Rhodiola extract laat al verbetering zien van het geheugen en het leervermogen. Na inname gedurende 10 dagen blijkt ook het lange termijn geheugen te verbeteren.



Rhodiola bij schizofrenie en Parkinson?
Rhodiola heeft niet alleen invloed op het gehalte serotonine in de hersenen, maar ook op het gehalte aan dopamine. Een laag gehalte aan dopamine wordt in verband gebracht met de ziekte van Parkinson. Door het verlagen van de activiteit van MAO en COMT kan het niveau van dopamine hoger blijven, wat een gunstige uitwerking bij deze ziektebeelden heeft. Russische onderzoeken lieten zien dat de verhoogde niveaus van serotonine en dopamine na inname van Rhodiola, gepaard gaan met een afname van COMT met 60%.



Rhodiola rosea: Pharmacological and Clinical Studies

The traditional use of R. rosea as a tonic in Siberian and Russian medicine stimulated extensive research leading to identification of R. rosea as an adaptogen — a substance that nonspecifically increases the resistance of an organism and does not disturb normal biological parameters. Studies in cell cultures, animals, and humans have revealed antifatigue, anti-stress, antihypoxic (protection against damaging effects of oxygen deprivation), anticancer, antioxidant, immune enhancing and sexual stimulating effects.2,18,24,38-40 Since the Russian and Bulgarian literature is so extensive, this discussion will highlight seminal studies and major reviews. The authors were fortunate to gain access to original reviews, articles, and doctoral theses. This overview relies heavily on monographs and peer-reviewed publications. The research data contained in these documents are helpful for understanding recent human studies in normal and pathological conditions.

Effects upon the Central Nervous System

The systematic study of the pharmacological effects of R. rosea, begun in 1965, found that small and medium doses had a simulating effect, such as lengthening the time mice swim and remain on vertical perches to the limit of their abilities. In contrast, larger doses were found to have more sedative effects. Small doses increased the bioelectrical activity of the brain, presumably by direct effects on the brainstem ascending and descending reticular formation.23-26,38,39,41 Further studies showed that medium range doses, unlike tranquilizers, enhanced the development of conditioned avoidance reflexes in rats and facilitated learning based on emotionally positive reinforcement.18,42-46 Overall, in small and medium doses, R. rosea stimulated norepinephrine (NE), dopamine (DA), serotonin (5-HT), and nicotinic cholinergic effects in the central nervous system (CNS). It also enhanced the effects of these neurotransmitters on the brain by increasing the permeability of the blood brain barrier to precursors of DA and 5-HT.2,23,42,46-49

In comparing studies of R. rosea, Asian ginseng (Panax ginseng C.A. Mey., Araliaceae), meclofenoxate (centrophenoxine), piracetam, citicholine, and other nootropics (substances that enhance cognition, protect the brain, and have low toxicity and few side effects), Petkov and colleagues noted that all of these agents enhance learning and memory in animal models and increase 5-HT levels in the frontal cerebral cortex.46-50 Diagram 1 illustrates the possible effects of R. rosea on neurotransmitters in multiple neuronal pathways.51 Starting in the brain stem, R. rosea promotes release of NE, 5-HT, and DA in ascending pathways that activate the cerebral cortex and the limbic system.2,49,50 Consequently, the cognitive (thinking, analyzing, evaluating, calculating, and planning) functions of the cerebral cortex and the attention, memory, and learning functions of the prefrontal and frontal cortex are enhanced. Other neuronal systems also contribute to the many aspects of memory: encoding, sorting, storage, and retrieval. For example, the cholinergic system uses the neurotransmitter acetylcholine (Ach) and contributes to memory function via pathways ascending from the memory storage systems of the limbic system to various areas of the cerebral cortex (memory retrieval). Agents that block Ach suppress the activity of these ascending pathways and interfere with memory. R. rosea reverses this blockade.49,50 The deterioration of these systems with age results in age-associated memory loss.52 R. rosea may prevent or ameliorate some age-related dysfunction in these neuronal systems.

Diagram 1: Possible Actions of Rhodiola Rosea

Diagram 1: Possible Actions of Rhodiola Rosea

As an antioxidant,53-55 R. rosea may help protect the nervous system from oxidative damage by free radicals. Stress interferes with memory functions and, over time, causes deterioration in memory systems. In addition to enhancing cognitive functions, learning, and memory by stimulating NE, DA, 5-HT, and Ach neuronal systems, R. rosea may exert positive effects on memory and cognition by improving resistance to physical and emotional stress. Thus, the dual action of cognitive stimulation and emotional calming creates benefits for both immediate cognitive and memory performance and for the long-term preservation of brain functions.

The psychostimulant effects of R. rosea were studied in 53 healthy subjects and 412 patients with neuroses and asthenic syndromes (of both functional and organic origin).56-58 Symptoms of asthenia (fatigue, decline in work capacity, trouble falling asleep, poor appetite, irritability, and headaches) responded favorably to R. rosea 50 mg three times a day. Treatment durations ranged from 10 days to 4 months. The asthenic states included both psychiatric and physical causes, for example, following influenza or other illness. In an open study of 128 patients aged 17-55 years, R. rosea alleviated fatigue, irritability, distractibility, headache, weakness and other vegetative symptoms in 64 percent of cases.57 Improvement was assessed by psychological testing and work productivity.

In 1869 Beard coined the term "neurasthenia" to include various forms of nervous asthenia. Controversy over this term has centered on the overlap of symptomatology and co-morbidity with other conditions (e.g., depression, neuroses, somatoform disorders, and chronic fatigue syndrome). Although this diagnosis has fallen out of favor in the United States and no longer appears in The Diagnostic and Statistical Manual of the American Psychiatric Association (DSM-IV),59 it is still widely used throughout the world.60-63 Neurasthenia is defined by the World Health Organization in the International Classification of Diseases (ICD-10)64 as:
  • either persistent and distressing feelings of exhaustion after minor mental effort, or persistent and distressing feelings of fatigue after minor physical effort;
  • accompanied by one or more of the following symptoms: muscular aches or pains; dizziness; tension headaches; sleep disturbance; inability to relax; and irritability;
  • inability to recover through rest, relaxation, or enjoyment;
  • does not occur in the presence of organic mental disorders, affective disorders or panic, or generalized anxiety disorder.
In an open study 27 healthy students, physicians, and scientists aged 19-46 years were given 10 drops of R. rosea tincture (equivalent to 100-150 mg R. rosea extract) once or twice a day for 2-3 weeks, beginning several days before intense intellectual work, such as final exams.58 The extract improved the amount and quality of work and in all cases prevented asthenic decompensation (loss of work capacity due to fatigue). A series of studies using a proofreading test showed that a one-time dose of R. rosea did not significantly increase the number of symbols corrected, but very significantly decreased the percent of errors made, particularly over an 8-hour period.65,66 Positive results found in the studies of proofreading tests were based on 300 mg/day or more. In medical treatments, the usual doses are 200-600 mg/day. R. rosea increased intellectual capacity (particularly by improving perception and processing of information) to a greater degree than an extract of eleuthero, formerly called Siberian ginseng (Eleutherococcus senticosus Rupr. et Max., Araliaceae).18

The decrease in physical and mental performance of physicians on prolonged night call is well known. Low dose (170 mg/day) R. rosea extract was given to 56 young, healthy physicians on night call.18 The effect was measured as total mental performance calculated as "Fatigue Index." The tests reflected an overall level of mental fatigue involving complex cognitive functions, such as associative thinking, short-term memory, calculation, concentration, and speed of audio-visual perception. These parameters were tested before and after night duty during three periods of two weeks each in a double-blind crossover trial. A statistically significant improvement in mental performance tests was observed in the treatment group (R. rosea) during the first two-week period. However, at 6 weeks the effect appeared to be lost. No side effects were reported. These results suggest that R. rosea extract can reduce fatigue under certain stressful conditions for some period of time. Possible reasons for the loss of efficacy over time may be the low dose used, the crossover design, or the overall length of night duty with increased fatigue by weeks 5 and 6.

Spasov and colleagues compared 100 mg/day R. rosea extract (SHR-5, Swedish Herbal Institute, Goteborg, Sweden; standardized to 3 percent rosavin and 0.8 percent salidroside) with placebo in a double-blind 20-day study of 60 Indian medical students studying in Russia during their final exam period.38 Despite the low dosage, investigators found significant improvements in general well-being, physical fitness, mental fatigue, final exam grades, and coordination, but not in some aspects of cognitive functioning in students taking R. rosea extract compared to placebo.

In a double-blind placebo-controlled study of 60 foreign students at a Russian high school, administration of a R. rosea extract (660 mg/day of a preparation named Rodaxon) resulted in an increase in physical (velergometric) work capacity, coordination, kinesthetic sensitivity, and general well-being along with a decrease in psychic fatigue and situational anxiety.39 Unfortunately, this study provides no information on the amount of R. rosea in the Rodaxon preparation.

R. rosea was beneficial in posttraumatic and vascular lesions of the brain. It was especially effective in combination with piracetam for patients with marked cognitive dysfunction.56 However, it did not reduce manic symptoms and could worsen paranoid states. In one study of more clearly depressed patients, R. rosea in combination with tricyclic antidepressants (TCAs) produced significant improvement in the majority of cases and decreased side effects of the TCAs.67 Ultimately, some of these patients were able to respond to R. rosea alone.

Antipsychotic medications used in large doses over many years to treat schizophrenic patients sometimes affect the dopaminergic nerves in the basal ganglia, the same nerves that are damaged in patients with Parkinson's Disease. When these nerves are compromised, patients develop a constellation of "Parkinsonian" symptoms, including stiffness, tremors, bradykinesia (slowed movements), and others. Anticholinergic medications have been used to relieve these symptoms when they are caused by antipsychotic medication; however, they sometimes fail to help. In schizophrenic patients whose anticholinergic medications had failed to relieve Parkinsonian symptoms, R. rosea was found to be of benefit.56,68

R. rosea may affect emotional tone by influencing neurotransmitter monoamine levels (NE, DA, 5-HT) in nerve tracts involved in the regulation of mood, anxiety, and emotion in the amygdala, hippocampus, hypothalamus, and midbrain. The stimulation of nicotinic cholinergic activity in the emotional circuits of the limbic system (in the temporal lobe) may also contribute to these effects. Alterations in monoamine levels underlie this complex spectrum of psychotropic activity: stimulating, tranquilizing, anti-stress, and antidepressant.

The authors have found that R. rosea can help patients with depressive syndromes, mental and physical fatigue (secondary to psychiatric and medical conditions), memory loss and cognitive dysfunction from a variety of causes, sexual dysfunction, and menopausal-related disorders. Dr. Brown and Dr. Gerbarg have successfully treated more than 150 individuals with R. rosea extract (3 percent rosavin and 1 percent salidroside) and have supervised the treatment of more than 100 additional cases (See Case Studies).

Effects on Physical Work Capacity

A number of studies have shown that R. rosea increased physical work capacity and dramatically shortened the recovery time between bouts of high-intensity exercise. These studies included normal individuals exposed to maximal work on a bicycle ergometer and Olympic-level cross country skiers and biathletes.69 In one study, 52 men (18-24 years of age) were given one dose of either 15 drops of R. rosea extract, 2 ml eleuthero, or 1 ml of a 1 percent solution piridrol (a stimulating psychotropic similar to methylphenidate). Fifteen drops of R. rosea extract is approximately equivalent to 150 mg of dry encapsulated root extract standardized to 3 percent rosavin and 1 percent salidroside. After 30 minutes, they pedaled an electric bicycle ergometer to produce a precise amount of work-induced baseline fatigue. After a 5-minute rest, they performed further work to determine the maximal duration of work they could accomplish at a specific intensity. During the second period of work, R. rosea drops, eleuthero extract, and piridrol increased work capacity by 9 percent, 6 percent, and 6 percent respectively (p<0.04) compared to placebo controls. Recovery was defined by the time of normalization of heart rate and arterial pressure. During the recovery period, at 10 minutes, the pulse slowed by a factor of 2.5 (67 beats per minute) in the R. rosea group versus 1.9 (87 beats per minute) in the control group. During the 3-day total recovery period, subjects given piridrol complained of insomnia, excitability, and irritability; whereas those given R. rosea had no adverse side effects and no complaints.

Endurance is the capacity to maintain work despite fatigue. Forty-two master level competitive skiers (20-25 years of age) took either R. rosea extract or placebo 30-60 minutes before training races (30 km) and a biathlon (20 km race on skis carrying a rifle and shooting targets at stops). Athletes given R. rosea had statistically significant increased shooting accuracy, less arm tremor and better coordination. Thirty minutes after work performance, the heart rate in the R. rosea group was 104-106 percent of baseline, versus 128.7 percent in the placebo group (p<0.02). R. rosea improved recovery time, strength, endurance, cardiovascular measures, and coordination.69

Adaptogens differ from other stimulants during forced, exhaustive muscular work. With classical stimulants the initial increase in work-capacity is followed by a period of substantially decreased (markedly below average) work-capacity. Repeated use of CNS stimulants depletes brain catecholamines and decreases conditioned reflexes. In contrast, with extracts of R. rosea, the initial increase in work-capacity is followed by a lesser diminution, such that the work-capacity continues to be above average.70

Animal studies suggest mechanisms that may be involved in these effects. R. rosea increased essential energy metabolites, adenosine triphosphate (ATP), and creatine phosphate in the muscle and brain mitochondria in mice made to swim to their limit.71 It may also enhance the ammonia reassimilation and energy metabolism of the cell by increasing ATP, ribonucleic acid (RNA), protein, and amino acid synthesis.72 In animal studies, R. rosea increased metabolism of fats twice as much as eleuthero73 and improved energy metabolism in the brain during intensive muscular workloads.74

Adaptogenic, Anti-Stress, and Neuroendocrine Effects

In their classic 1968 paper, Soviet pharmacologists Brekhman and Dardymov surveyed the literature on 189 medicinal plants and identified five (including R. rosea) that met the three defining criteria for an adaptogen:75

An adaptogen should be innocuous and cause minimal disturbance of the normal physiological functions of an organism;
The action of an adaptogen should be nonspecific (i.e., it should increase resistance to adverse influences of a wide range of harmful factors of physical, chemical, and biological nature);
An adaptogen may possess normalizing action irrespective of the direction of the preceding pathological changes (i.e., if a body parameter is high, the adaptogen brings it down towards normal; if a parameter is low, the adaptogen brings it up towards normal).

The forced swimming test, used by Russian scientists to measure nonspecific resistance to stress, was later named after Porsolt who assigned specific parameters such as water temperature and the dimensions of the glass cylinder in which a mouse or rat was forced to swim to exhaustion (about 15 minutes). After an initial period of vigorous activity, the rodent adopts a characteristic immobile posture, making only the minimal movements necessary to stay afloat.76 The validity of the Porsolt swim test and its relationship to depression have been discussed extensively77,78 and it subsequently became a screening test for antidepressant agents by pharmaceutical companies. Although different laboratories have made minor technical modifications, the fundamentals of the test remain the same. Adaptogens and antidepressants increase the amount of time the animal is able to keep swimming actively.75 Panossian and colleagues propose to update the definition of adaptogen by highlighting more specific biochemical actions as metabolic regulators.70 The wide range of medical benefits and physiological actions may be based on the effects of adaptogens on regulatory systems found in many organs and tissues (e.g., immune, hormonal, CNS, cardiovascular, muscular, etc.). They hypothesize that adaptogens reduce damage from stressors by altering the reactivity of the organism's defense system, including the hypothalamic pituitary axis (HPA) and the efferent sympatho-adrenal system (SAS).70

A recent study showed that R. rosea and eleuthero protected the embryos of freshwater snails (Lymnaea stagnalis) from a variety of environmental stressors.79 Enhancement in resistance was studied by applying phyto-adaptogen extracts for a period of 20 hours to 3-day old L. stagnalis larvae. Subsequently the larvae were exposed to the following highly toxic environmental stressors: a physical stress (heat shock: 43 degrees C for 4 minutes); an oxidative stress (superoxide radicals induced by menadione 600 microM for 2 hours); and heavy metal-induced stress (copper 50 microM for 1 hour or cadmium 20 microM for 1 hour). Both eleuthero and R. rosea strongly protected snail embryos from lethal heat shock, from the adverse effects of menadione-induced superoxide radicals, and from toxic exposure to heavy metals (copper and cadmium). Although the degree to which resistance was enhanced depended on the type of stressor applied, these results confirm the definition of phyto-adaptogens as being universal enhancers of non-specific resistance against different kinds of stress conditions. The mechanisms of nonspecific resistance are not entirely clear, but probably involve improvements in cellular energy metabolism, based in part on ATP (as discussed above).

In higher animals and humans, nonspecific resistance may also be enhanced by improvements in the neurological mechanisms of dealing with stress (catecholamines, serotonin, and endorphins). The serotonin system is necessary for the stress response reaction, adaptation to new environmental conditions, and tolerance of hypoxia. Numerous stressors decrease serotonin in the hypothalamus. Theoretically, the ability of R. rosea to increase the nonspecific resistance of animals may be related to its capacity to increase serotonin in the hypothalamus and midbrain. Additional research showed that an intact hypothalamic pituitary adrenal axis and participation of the gonads and thymus were necessary for this anti-stress effect.2 Furthermore, R. rosea reduces the activation of several components of the stress response system. For example, it modestly increased serum beta-endorphins that protected rats against subsequent stress-induced excess endorphin elevation.80 In addition, R. rosea moderates the release of opioid peptides that occurs as part of the pituitary adrenal axis response to stress. This reduced release protects against sudden excess opioid and catecholamine (NE and DA) levels (which interfere with normal brain functions and can lead to heart damage), while allowing a more moderate release that increases stress tolerance without damaging the central nervous system or the cardiovascular system (see Diagram 2). R. rosea extracts also protect the brain and heart by reducing the secretion of corticotrophin releasing factor (CRF) under stress.80,81

Diagram 2: Rhodiola rosea Effects on the Heart During Emotional and Physical Stress

Endocrine and Reproductive Effects

Neuroendocrine animal studies showed that R. rosea, like other adaptogens, enhanced thyroid function without causing hyperthyroidism.81 In addition, the thymus gland functioned better and was protected from the involution that occurs with aging. The adrenal glands functioned with better reserve and without the kind of hypertrophy caused by other psychostimulants.

Egg maturation was enhanced in rats and an anabolic effect in males (increased muscle building and gonad strengthening similar to effects of low-dose testosterone) was observed in a number of species. Administration of rhodosin (extract of R. rosea for intravenous, intramuscular, or peritoneal injection) to sexually mature female mice over a period of 4 weeks prolonged menstruation from 1.3 days (control) to 2.8 days (rhodosin treated), reduced the resting period from 3.8 days (control) to 2.2 days (rhodosin treated), and increased the relative number of estrus days from 29 percent to 56 percent. In the majority of rhodosin treated animals, the number of growing follicles, the oocyte volumes, the accumulation of RNA in oocyte cytoplasm, the proliferation of the lining and glandular cells of the uterine horns, and the preparation of uterine mucosa for fertilization all increased. In sexually mature mice, rhodosin increased the mean weight of the uterine horns from 39.6+4.11 mg to 59.5+1.59 mg and the mean weight of the ovaries from 6.4+0.65 mg to 9.1+0.45 mg. However, the administration of rhodosin to sexually immature female white mice for 3 weeks did not affect sexual maturation, the onset of estrus, the weight of ovaries or uterine horns, or the maturation of follicles. Thus, it is probable that the estrogenic effects of R. rosea preparations depend upon a specific hormonal milieu.82,83

These pre-clinical investigations led to a study of R. rosea extract in women suffering from amenorrhea (loss of menstrual cycles). Forty women with amenorrhea were given R. rosea (either 100 mg R. rosea extract orally twice a day for 2 weeks, or 1 ml rhodosin intramuscularly for 10 days). In some subjects the treatment cycle was repeated 2-4 times. Normal menses were restored in 25 women, 11 of whom became pregnant. In those with normal menses, the mean length of the uterine cavity increased from 5.5 cm to 7.0 cm (normal) after R. rosea treatment.82,83 One of the authors (Dr. Brown) has treated in his practice several women who had failed to conceive with standard fertility drugs, and who become pregnant within several months of beginning R. rosea extract. These preliminary clinical observations warrant controlled follow-up clinical trials. Using the in vitro estrogen receptor competition assay, Patricia Eagon, Ph.D. (personal communication, December 2001) recently found that R. rosea extract showed strong estrogen binding properties that require further characterization.

In an open study, 26 out of 35 men with erectile dysfunction and/or premature ejaculation (of 1-20 years duration) responded to R. rosea (150-200 mg/day for 3 months) with substantially improved sexual function, normalization of prostatic fluid, and an increase in 17-ketosteroids in urine.56,69

Cardioprotective Effects

Cardioprotective effects of R. rosea include: prevention of stress-induced cardiac damage,80,81,84 decreased myocardial catecholamines and cyclic adenosine monophosphate (cAMP) levels; and reduced adrenal catecholamine release80,81 (see Figure 2). Furthermore, R. rosea activation of mu-opiate receptors in heart muscle prevented reperfusion arrhythmias in animal hearts. This effect could be blocked by naloxone injection (known to inhibit mu-opiate receptors), thus confirming that the anti-arrhythmic effect of R. rosea is associated with the mu-opiate receptors in myocardial (heart) muscle.84

In a series of joint Swedish and Russian double-blind, randomized placebo-controlled studies,85 10 healthy but sedentary men (ages 20-31 years) were evaluated. Twenty percent of the subjects had average physical work capacity as measured by Power Work Capacity (PWC-170) and 80 percent had below-average PWC-170, indicating a low level of physical training (PWC-170 is a calculation based on the amount of work performed by a man if his heart rate reaches 170 beats per minute, bpm). A sequence of complex 1- to 7-day trials compared the effects of an adaptogen formula, a mixture of mono- and polyphenolic adaptogens (MMPA). Each tablet contained the following ingredients: 3 mg rhodioloside from R. rosea root extract, 50 mg; 3 mg total sum of isofraxidine-, syringine-, and syringaresinoie-glycosides from eleuthero root extract, 100 mg; and 4 mg schizandrine and gamma-schizandrine from schisandra (Schisandra chinensis (Turcz.) Baill., Lamiaceae) fruit extract, 150 mg.

During the 7-day adaptogen trial, subjects were given 3 capsules (containing a total of 150 mg R. rosea) twice a day on days 1-3; 4 capsules (200 mg R. rosea) twice a day on days 4-6, and 4 capsules once on day 7. The mean increase in physical work capacity was 28 percent with dosed physical loads in subjects treated with the adaptogen formula. Thus, sedentary subjects given the adaptogen were able to perform in the lower level of trained athletes without any exercise training. Their heart rate variability and inotropic (strength of heart muscle contractility) functions improved.

Both the sympathetic and parasympathetic inputs to the heart were enhanced such that the heart showed increased reserves under stress of greater intensity. The autonomic nervous system controls automatic or involuntary functions of the body. It has two components: the sympathetic and the parasympathetic nerves (see Diagram 2). The sympathetic nervous system is the "fight-or-flight" system that helps the organism respond to stress (e.g., by increasing heart rate, respiratory rate, and muscle tone). The parasympathetic nervous system conserves and restores energy (e.g., by slowing the heart rate, respiratory rate, and metabolism). By enhancing the functions of the sympathetic and parasympathetic systems, R. rosea enables the organism to put out more energy during stress while at the same time maintaining higher energy reserves. One of the challenges presented by research on a multi-ingredient formula is that it is not usually possible to attribute the results to the activity of any one single herbal component. However, the results of this study are consistent with results of other research conducted solely on R. rosea monopreparations.

Antioxidant and Anti-carcinogenic Effects

R. rosea is rich in phenolic compounds, known to have strong antioxidant properties.53,86 Animal studies have shown that R. rosea decreases toxicity from cyclophosphamide, rubomycin, and adriamycin (anti-cancer drugs), while it enhances their anticarcinogenic effects.87-89 Udintsev and Schakhov studied the effect of R. rosea root extract (RRRE), a tincture manufactured according to the Russian Pharmacopoeia standards (minimum 0.8 percent salidroside and 3 percent rosavin), on tumor cells (transplanted into mice) and normal bone marrow cells in two mouse cancer models.90 One group of mice with Ehrlich ascites tumor (EAT) and another group with Lewis lung carcinoma (3LL) were first treated with 100 mg/kg cyclophosphamide (a chemotherapy agent) that suppressed tumor growth to 31-39 percent and limited 3LL metastases to 18 percent, while also reducing the number of normal bone marrow cells, leucocytes, and myelokariocytes, to 40-50 percent and 20-25 percent of normal, respectively. In comparison, RRRE, 0.5 mg/kg/day given orally 2-8 days after tumors had been transplanted, suppressed growth of both tumors by 19-27 percent and 3LL metastases 16 percent. However, in contrast to cyclophosphamide, RRRE caused no reduction in normal bone marrow cells. In animals given both RRRE and cyclophosphamide, the RRRE increased the antimetastatic effect of cyclophosphamide by 36 percent (p<0.05). RRRE also increased the number of leukocytes by 30 percent and myelokariocytes by 16-18 percent.

In another mouse tumor model, Udintsev and colleagues showed that RRRE (minimum 0.8 percent salidroside and 3 percent rosavin) increased the antitumor effect of the drug adriamycin while substantially reducing its liver toxicity.89 Many chemotherapy agents are hematotoxic (reduce the number of normal blood cell precursors in bone marrow) or hepatotoxic (cause damage to the liver). These serious side effects were significantly ameliorated by RRRE. Thus, the research suggests that RRRE can both enhance tumor inhibition by chemotherapeutic drugs while alleviating dangerous side effects.

Substances that reduce the incidence of chromosomal aberrations are termed antimutagenic. Salikhova and colleagues found that in mice injected with cyclophosphamide, RRRE (minimum 0.8 percent salidroside and 3 percent rosavin) had antimutagenic effects.91 Compared to placebo controls, RRRE reduced the development of chromosomal aberrations by 50 percent and reduced the incidence of cells with micronuclei by more than 50 percent. RRRE also increased indices of DNA repair in bone marrow cells after exposure to the mutagen N-nitroso-N-methylurea (NMU).91

In a small pilot study of 12 patients with superficial bladder carcinoma (TIG1-2), treatment with RRRE (minimum 0.8 percent salidroside and 3 percent rosavin) improved parameters of leukocyte integrines and T-cell immunity.92 The average frequency of relapse was reduced, but did not reach statistical significance. Larger placebo-controlled studies of R. rosea extracts to augment tumor inhibition and reduce toxic effects of chemotherapy agents are needed.

References
  1. Engler A. Syllabus der Pflanzenfamilien. Vol. 2. Berlin, Germany: Borntraeger; 1964. p. 199-200.
  2. Saratikov AS, Krasnov EA. Rhodiola rosea is a valuable medicinal plant (Golden Root). Tomsk, Russia: Tomsk State University Press; 1987.
  3. Mell CD. Dyes, tannins, perfumes, and medicines from Rhodiola rosea. Textile Colorist 1938;60(715):483-4.
  4. Linnaeus C. Materia Medica. Liber I. De Plantis. Stockholm, Sweden: Lars Salvius; 1749. p. 168.
  5. Linnaeus C. Örtabok. Stockholm, Sweden: Almquist and Wiksell; 1725. p. 127.
  6.  Linnaeus C. Plants of Lapland. Uppsala, Sweden: The Royal Science Academy’s documents; 1754. p. 182-7.
  7. Linnaeus C. Flora Oeconomica eller Hushålls-Nyttan af de i Swerige, Wildt wäxande Örter. Stockholm, Sweden: Lars Salvii; 1748. p. 399.
  8. Linnaeus C, Tonning H. Norwegian Rarities. Uppsala, Sweden: Johan Edman;1768. p. 3-19.
  9. Sandberg F, Bohlin L. Fytoterapi: växbaserade läkemedel [Remedies based on herbs]. Stockholm, Sweden: Hälsokostrådets förlag AB; 1993. p. 131.
  10. Commission Nationale de la Pharmacopée Française. Pharmacopée Française. IX ed. Table alphabétique revisée des drogues végétales. Paris, France: French Agence du Médicament–Direction des French Laboratoires et des Contrôles, Unité Pharmacopée; 1974. p. II A214-101.
  11.  Sandberg F. Herbal Remedies and Herb Magic. Stockholm, Sweden: Det Bästa; 1998. p. 223.
  12.  Mashkovskij MD. Doctor’s manual: medical drugs. 12th ed. Vol. 1. Moscow, Russia: Meditzina; 1976. p. 161-5.
  13. Khaidaev Z, Menshikova TA. Medicinal Plants in Mongolian Medicine. Ulan-Bator, Mongolia; 1978.
  14. Magnusson B. Fägringar: Växter som berör oss (Beauty: herbs that touch us). Östersund, Sweden: Berndtssons; 1992. p. 66-7.
  15.  Hoppe H. Drogen kunde. Band 1, Angiosperm 8.Berlin, Germany: Walter de Gruyter; 1975. p. 986-7.
  16. Nörr H. Phytochemical and pharmacological investigation of the adaptogens: Eleutherococcus senticocus, Ocimum sanctum, Codonopsis pilosula, Rhodiola crenulata [dissertation]. Munich, Germany: Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München; 1993.
  17. Krylov GV. Herbs for Life. Novosibirsk, Russia: Academic Press; 1969. p. 264.
  18.  Darbinyan V, Kteyan A, Panossian A, Gabrielian E, Wikman G, Wagner H. Rhodiola rosea in stress induced fatigue: a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine 2000;7(5):365-71.
  19. Komarov VL, editor. Flora of the USSR. Volume IX, Rosales and Sarraceniales. Genus 698: Rhodiola L. Leningrad, Russia: The USSR Academy of Sciences: 1939. Translation: Jerusalem, Israel: Israel Program for Scientific Translation; 1971. p. 20-36.
  20. Hegi G, editor. Illustrierte Flora von Mitteleuropa. Vol.IV/2, Liefering 2/3. Hamburg/Berlin, Germany; P. Posey: 1963. p. 99-102.
  21. Ohba H. A revision of the eastern Himalayan species of the subgenus Rhodiola of the genus Sedum. In: Ohashi H, editor. Flora of Eastern Himalaya, 3rd report. Tokyo, Japan: University of Tokyo Press; 1975. p. 283-362.
  22. Saratikov AS, Krasnov EA. Chapter I: Chemical composition of Rhodiola rosea. In: Saratikov AS, Krasnov EA. Rhodiola rosea is a valuable medicinal plant (Golden Root). Tomsk, Russia: Tomsk State University; 1987. p. 3-39.
  23. Kurkin VA, Zapesochnaya GG. Chemical composition and pharmacological properties of Rhodiola rosea. Chemical and Pharmaceutical Journal (Moscow) 1986;20(10):1231-44.
  24. Saratikov AS. Golden Root (Rhodiola rosea). Tomsk, Russia: Tomsk State University Press; 1974.
  25. Kurkin VA, Zapesochnaya GG. Chemical composition and pharmacological characteristics of Rhodiola rosea [review]. Journal of Medicinal Plants, Russian Academy of Science, Moscow 1985;1231-445.
  26. Saratikov AS, Krasnov EA, Khnikina LA, Duvidson LM. Isolation and chemical analysis of individual biologically active constituents of Rhodiola rosea. Proceedings of the Siberian Academy of Sciences. Biology 1967;1:54-60.
  27. The Russian Federation Ministry of Health and Medical Industry. Russian National Pharmacopoeia. Pharmacopoeia article: PA 42-2126-83, liquid extract of Rhodiola rosea root and rhizome. Moscow, Russia: The Russian Federation Ministry of Health and Medical Industry; 1983.
  28. Dubichev AG, Kurkin BA, Zapesochnaya GG, Vornotzov ED. Study of Rhodiola rosea root chemical composition using HPLC. Cemico-Parmaceutical Journal 1991;2:188-93.
  29. Ganzera M, Yayla Y, Khan IA. Analysis of the marker compounds of Rhodiola rosea L. (golden root) by reversed phase high performance liquid chromatography. Chem Pharm Bull (Tokyo) 2001;49(4):465-7.
30.       Zhang S, Wang J, Zhang H. Chemical constituents of Tibetan medicinal herb Rhodiola kirilowii (Reg.). Gansu Chung Kuo Chung Yao Tsa Chih 1991;16(8):483, 512.
31.       Wang S, Wang FP. Studies on the chemical components of Rhodiola crenulata. Yao Hsueh Hsueh Pao 1992;27(2):117-20.
32.       Wang S, You XT, Wang FP. HPLC determination of salidroside in the roots of Rhodiola genus plants. Yao Hsueh Hsueh Pao 1992;27(11):849-52.
33.       Bridel M, Beguin C. Isolation of rutoside, asparagines and a new glycoside, hydrolysable by emulsion, salidroside from Salix triandra L. Séances Acad Sci 1926;183:321-3.
34.       Shi L, Ma Y, Cai Z. Quantitative determination of salidroside and specnuezhenide in the fruits of Ligustrum lucidum by high performance liquid chromatography. Biomed Chromatogr 1998;12(1):27-30.
35.       Thieme H. On the identity of glucoside rhodioloside and salidroside. Pharmazie 1969;24(2):118-9.
36.       Thieme H, Walewska E, Winkler HJ. Isolation of salidroside from leaves of Rhododendron ponticum x catawbiense. Pharmazie 1969;24(12):783.
37.       The Russian Federation Ministry of Health and Medical Industry. Russian National Pharmacopoeia. Moscow, Russia: The Russian Federation Ministry of Health and Medical Industry; 1989.
38.       Spasov AA, Wikman GK, Mandrikov VB, Mironova IA, Neumoin VV. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine 2000;7(2):85-9.
39.       Spasov AA, Mandrikov VB, Mironova IA. The effect of the preparation rhodiosin on the psychophysiological and physical adaptation of students to an academic load. Eksp Klin Farmakol 2000;63(1):76-8.
40.       Furmanowa M, Oledzka H, Michalska M, Sokolnicka I, Radomska D. Chapter XXIII Rhodiola rosea L. (Roseroot): In vitro regeneration and the biological activity of roots. Vol. 33. In: Bajaj YPS, editor. Biotechnology in Agriculture and Forestry. Vol. 33. Medicinal and aromatic plants. VIII. Berlin and Heidelberg, Germany: Springer-Verlag; 1995. p. 412-26.
41.       Saratikov AS, Krasnov EA. Chapter VII: Adaptogenic properties of Rhodiola rosea. In: Saratikov AS, Krasnov, editors. Rhodiola rosea is a valuable medicinal plant (Golden Root). Tomsk, Russia: Tomsk State University Press; 1987. p. 194-215.
42.       Petkov VD, Stancheva SL, Tocuschieva L, Petkov VV. Changes in brain biogenic monoamines induced by the nootropic drugs adafenoxate and meclofenoxate and by citicholine (experiments on rats). Gen Pharmacol 1990;21(1):71-5.
43.       Baranov VB. Experimental trials of herbal adaptogen effect on the quality of operation activity, mental and professional work capacity. Contract 93-11-615 Stage 2 Phase I. Moscow, Russia: Russian Federation Ministry of Health Institute of Medical and Biological Problems; 1994.
44.       Komar VV, Kit SM, Sischuk LV, Sischuk VM. Effect of Rhodiola rosea on the human mental activity. Pharmaceutical J 1981;36(4):62-4.
45.       Stancheva SL, Mosharrof A. Effect of the extract of Rhodiola rosea L. on the content of the brain biogenic monoamines. Medecine Physiologie Comptes Rendus de l’Académie Bulgare des Sciences 1987;40(6):85-7.
46.       Lazarova MB, Petkov VD, Markovska VL, Petkov VV, Mosharrof A. Effects of meclofenoxate and extr. Rhodiolae rosea L. on electroconvulsive shock-impaired learning and memory in rats. Methods Find Exp Clin Pharmacol 1986;8(9):547-52.
47.       Petkov VD, Yonkov D, Mosharoff A, Kambourova T, Alova L, Petkov VV, et al. Effects of alcohol aqueous extract from Rhodiola rosea L. roots on learning and memory. Acta Physiol Pharmacol Bulg 1986;12(1):3-16.
48.       Saratikov A, Marina TF, Fisanova LL. Effect of golden root extract on processes of serotonin synthesis in CNS. Journal of Biological Sciences 1978;6:142.
49.       Marina TF, Alekseeva LP. Effect of Rhodiola rosea extract on electroencephalograms in rabbit. In. Saratikov AS, editor. Stimulants of the Central Nervous System. Tomsk, Russia: Tomsk State University Press; 1968. p. 22-6.
50.       Marina TF. Effect of Rhodiola rosea extract on bioelectrical activity of the cerebral cortex isolated to a different extent from the brain. In. Saratikov AS, editor. Stimulants of the Central Nervous System. Tomsk, Russia: Tomsk State University Press; 1968. p. 27-31.
51.       Brown RP, Gerbarg PG, Muskin PR. Alternative Therapies in Psychiatry. In: Tasman A, Lieberman J, Kay J, editors. Psychiatry. 2nd ed [in press]. West Sussex, England: Wiley & Sons, Ltd.; 2002.
52.       Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NP, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998;1(1):69-73.
53.       Furmanowa M, Skopinska-Rozewska E, Rogala E, Malgorzata H. Rhodiola rosea in vitro culture: phytochemical analysis and antioxidant action. Acta Societis Botanicorum Poloniae 1998;76(1):69-73.
54.       Durany N, Munch G, Michel T, Riederer P. Investigations on oxidative stress and therapeutical implications in dementia. Eur Arch Psychiatry Clin Neurosci 1999;249 Suppl 3:68-73.
55.       Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 1999;19(18):8114-21.
56.       Saratikov AS, Krasnov EA. Chapter VIII: Clinical studies of Rhodiola. In: Saratikov AS, Krasnov EA, editors. Rhodiola rosea is a valuable medicinal plant (Golden Root). Tomsk, Russia: Tomsk State University Press; 1987. p. 216-27.
57.       Krasik ED, Morozova ES, Petrova KP, Ragulina GA, Shemetova LA, Shuvaev VP. Therapy of asthenic conditions: clinical perspectives of application of Rhodiola rosea extract (golden root). In. Proceedings Modern problems in psycho-pharmacology. Kemerovo-city, Russia: Siberian Branch of Russian Academy of Sciences: 1970. p. 298-330.
58.       Krasik ED, Petrova KP, Rogulina GA, Shemetova LYa, Shuvayeva. New data on the therapy of asthenic conditions (clinical prospects for the use of Rhodiola extract). Proceedings of All-Russia Conference: Urgent Problems in Psychopharmacology 1970 May 26-29. Sverdlovsk, Russia: Sverdlovsk Press; 1970. p. 215-7.
59.       American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed (DSM-IV). Washington, DC: American Psychiatric Association; 1994.
60.       Hickie I, Davenport T, Issakidis C, Andrews G. Neurasthenia: prevalence, disability, and healthcare characteristics in the Australian community. Br J Psychiatry 2002;181:56-61.
61.       Merikangas K, Angst J. Neurasthenia in longitudinal cohort study of young adults. Psychological Medicine 1994;24(4):1013-24.
62.       Lin TY. Neurasthenia revisited: its place in modern psychiatry. Psychiatric Annals 1992;22(4):173-87.
63.       Zheng YP, Lin KM, Takeuchi D, Kurasaki KS, Wang Y, Cheung F. An epidemiological study of neurasthenia in Chinese-Americans in Los Angeles. Comprehensive Psychiatry 1997;38(5):249-59.
64.       U.S. Department of Health and Human Services. The International Classification of Diseases. 10th Revision (ICD-10). Washington, DC: U.S. Department of Health and Human Services; 1992.
65.       Zatova MI, Krilov GV, Saratikov AS. Golden root: new stimulative and adaptogenic drug. Proceedings of Siberian Academy of Sciences. Biological and Medical Sciences. 1965;2:111-9.
66.       Saratikov AS. Screening for natural central nervous system stimulants. In: Saratikov AS, editor. Stimulants of the Central Nervous System. Vol. 1. Tomsk, Russia: Tomsk State University Press; 1966 p. 3-23.
67.       Brichenko VS, Kupriyanova IE, Skorokhova TF. The use of herbal adaptogens with tricyclic antidepressants in patients with psychogenic depression. In: Saratikov AS, editor. Modern Problems of Pharmacology and Search for New Medicines. Tomsk, Russia: Tomsk State University Press; 1986. p. 58-60.
68.       Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Ann N Y Acad Sci 1999;893:154-75.
69.       Saratikov AS, Krasnov EA. Chapter III: Stimulative properties of Rhodiola rosea. In: Saratikov AS, Krasnov EA, editors. Rhodiola rosea is a valuable medicinal plant (Golden Root). Tomsk, Russia: Tomsk State University; 1987. p. 69-90.
70.       Panossian A, Wikman G, Wagner H. Plant adaptogens. III. Earlier and more recent aspects and concepts on their mode of action. Phytomedicine 1999;6(4):287-300.
71.       Salnik BU. Effect of several stimulators on central nervous system energy metabolism during muscular workload [dissertation]. Tomsk, Russia: Tomsk State Medical Institute; 1970.
72.       Adamchuk LB. Effects of Rhodiola on the process of energetic recovery of rat under intense muscular workload [dissertation]. Tomsk, Russia: Tomsk State Medical Institute; 1969.
73.       Danbueva EA. Effect of stimulators of the central nervous system on lipid metabolism at different muscular workloads [dissertation]. Tomsk, Russia: Tomsk State Medical Institute; 1968.
74.       Revina TA. Effect of stimulators of the central nervous system on carbohydrate and high energy phosphorylated compound metabolism in the brain during intense muscular workload [dissertation] Tomsk, Russia: Tomsk State Medical Institute; 1969.
75.       Brekhman II, Dardymov IV. New substances of plant origin which increase non-specific resistance. Ann Rev Pharmacol 1968;(9):419-30.
76.       Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioral despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978;47(4):379-91.
77.       Borsini F, Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 1988;94(2):147-60.
78.       Willner P. The validity of animal models of depression. Psychopharmacology (Berl) 1984;83(1):1-16.
79.       Boon-Niermeijer EK, van den Berg A, Wikman G, Wiegant FA. Phyto-adaptogens protect against environmental stress-induced death of embryos from the freshwater snail Lymnaea stagnalis. Phytomedicine 2000;7(5):389-99.
80.       Lishmanov IuB, Trifonova ZhV, Tsibin AN, Maslova LV, Dementeva LA. Plasma beta-endorphin and stress hormones in stress and adaptation. Biull Eksp Biol Med 1987;103(4):422-4.
81.       Maslova LV, Kondratev BIu, Maslov LN, Lishmanov IuB. The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress. Eksp Klin Farmakol 1994;57(6):61-3.
82.       Gerasimova HD. Effect of Rhodiola rosea extract on ovarian functional activity. Proc of Scientific Conference on Endocrinology and Gynecology. Sverdlovsk, Russia. 1970 Sept 15-16. Siberian Branch of the Russian Academy of Sciences. p. 46-8. 83.    Saratikov AS, Krasnov EA. Chapter VI: The influence of Rhodiola on endocrine glands and the liver. In: Saratikov AS, Krasnov EA, editors. Rhodiola rosea is a valuable medicinal plant (Golden Root). Tomsk, Russia: Tomsk State University; 1987. p. 180-93.
84.       Maimeskulova LA, Maslov LN, Lishmanov IuB, Krasnov EA. The participation of the mu-, delta- and kappa-opioid receptors in the realization of the anti-arrhythmia effect of Rhodiola rosea. Eksp Klin Farmakol 1997;60(1):38-9.
85.       Baranov VB. The response of cardiovascular system to dosed physical load under the effect of herbal adaptogen. Contract 93-11-615 Phase I and Phase II. Moscow: Russian Federation Ministry of Health Institute of Medical and Biological Problems; 1994.
86.       Bolshakova IV, Lozovskaia EL, Sapezhinskii II. Antioxidant properties of a series of extracts from medicinal plants. Biofizika 1997;42(2):480-3.
87.       Udintsev SN, Schakhov VP. Decrease of cyclophosphamide haematotoxicity by Rhodiola rosea root extract in mice with Ehrlich and Lewis transplantable tumors. Eur J Cancer 1991;27(9):1182.
88.       Borovskaya TG, Fomina TI, Iaremenko KV. A decrease in the toxic action of rubomycin on the small intestine of mice with a transplantable tumor through the use of a Rhodiola extract. Antiobiot Khimioter 1988;33(8):615-7.
89.       Udintsev SN, Krylova SG, Fomina TI. The enhancement of the efficacy of adriamycin by using hepatoprotectors of plant origin in metastases of Ehrlich’s adenocarcinoma to the liver in mice. Vopr Onkol 1992;38(10):1217-22.
90.       Udintsev SN, Shakhov VP. The role of humoral factors of regenerating liver in the development of experimental tumors and the effect of Rhodiola rosea extract on this process. Neoplasma 1991;38(3):323-31.
91.       Salikhova RA, Aleksandrova IV, Mazurik VK, Mikhailov VF, Ushenkova LN, Poroshenko GG. Effect of Rhodiola rosea on the yield of mutation alterations and DNA repair in bone marrow cells. Patol Fiziol Eksp Ter 1997;(4):22-4.
92.       Bocharova OA, Matveev BP, Baryshnikov AIu, Figurin KM, Serebriakova RV, Bodrova NB. The effect of a Rhodiola rosea extract on the incidence of recurrences of a superficial bladder cancer (experimental clinical research). Urol Nefrol (Mosk) 1995;(2):46-7.



Comments