Home


Biography

Dr. Hyunjung Shim is an assistant professor at Yonsei University, School of Integrated Technology. From 2008 to 2013, she worked at the Samsung Advanced Institute of Technology, Samsung Electronics. She received her Ph.D. and M.S. degrees in Electrical and Computer Engineering from Carnegie Mellon University in 2008. Her research interests include generative models, face/object recognition, 3D modeling and reconstruction, inverse rendering, and depth image processing. Most recently, her research activities focus on developing generative adversarial models for computer vision and graphics.  

Work Experience

 
 
 
 
 
 
2008.11. ~ 2013. 2. : Full-time research scientist, Samsung Advanced Institute of Technology, Samsung Electronics (South Korea).
2006. 5. ~ 2006. 8. : Summer intern, Eastman Kodak Company (U.S.A).
 

Education

  
 
 
  2008.10. : Ph.D. in Electrical and Computer Engineering, Carnegie Mellon University 
  2004. 5. : M.S. in Electrical and Computer Engineering, Carnegie Mellon University
  2002. 2. : B.S. in Electrical Engineering, Yonsei University 
 
  
 

Professional Activity
ACM Multimedia 2018 Interactive Art Co-chair  

IPIU 2018 Program Committee

ACM SIGGRAPH ASIA 2012 Course Committee  
 
SIGMA XI 2012 Invited Talk (GM Detroit)
    H Shim, "Depth Cameras for Computer Vision", Mar. 2012.
 
ACM SIGGRAPH Asia 2012 Course Session Organizer
    H Shim, S Lee, H Lim, "The Potential and Limitation of Depth Cameras for Computer Graphics", Dec. 2012
 
IEEE ICIP 2012 Tutorial Session Speaker
    S Lee, H Shim, O Choi, "Time-of-Flight Depth Image Enhancement", Sep. 2012
 
ACM SIGGRAPH Asia 2011 Course Session  Organizer
    H Shim, S Lee "Time of Flight (ToF) Depth Sensor-based 3D Imaging Architecture for Future Display", Dec. 2011

ACCV 2012 Workshop Organizer 
    S Lee, H Shim, O Choi, S-W Jung, R. B. Rusu, "Workshop on Color Depth Fusion in Computer Vision", Nov. 2012
 
IPIU 2012 Invited Talk 
    H Shim, "Color and Depth based Lighting and Reflectance Modeling", Feb. 2012

Publication

(Journal)

Robust Approach to Inverse Lighting using RGB-D images
J Choe, H Shim, Information Sciences, Volume 438, 73–94, 2018/04. (IS)

Robust approach to reconstructing transparent objects using a time-of-flight depth camera
K Kim, H Shim, 
Optics Express 25 (3), 2666-2676, 2017/1.
(Opts Exp)

Online underwater optical mapping for trajectories with gaps
A Elibol, H Shim, S Hong, J Kim, N Gracias, R Garcia, Intelligent Service Robotics 9 (3), 217-229, 2016/6.

Recovering Translucent Object using a Single Time-of-flight Depth Camera
H Shim, S LeeIEEE Transaction on Circuit and Systems for Video Technology, 2016. (TCSVT)

Skewed stereo time-of-flight camera for translucent object imaging
S Lee, H Shim, Image and Vision Computing 43, 27-38, 2015.

Personalized Face Modeling for Photorealistic Synthesis
K Kim, H Shim, Journal of International Society for Simulation Surgery 2 (2), 47-51, 2015.

Hybrid exposure for depth imaging of a time-of-flight depth sensor
  H Shim, S Lee, Optics Express, Vol. 22 Issue 11, pp.13393-13402, 2014. 
(Opts Exp)

Automatic Color Realism Enhancement for Computer Generated Images
   H Shim, S Lee, Elsevier Computers & Graphics, 2012
 
 
   H Shim, SPIE Optical Engineering 51 (7), 2012/07
 
A Probabilistic Approach to Realistic Face Synthesis with a Single Uncalibrated Image
   H Shim, IEEE Transactions on Image Processing, 2012/07  (TIP)
 
 H Shim, R Adelsberger, JD Kim, SM Rhee, T Rhee, JY Sim, M Gross, C Kim, Springer The Visual Computer, 1-13, 2011
 
A Subspace Model-based Approach to Face Relighting under Unknown Lighting and Poses
 H Shim, J Luo, T Chen, IEEE Transactions on Image Processing, 17 (8), 1331-1341, 2008/06 (TIP)
 
(Conference)

Improved Training of Generative Adversarial Networks Using Representative Features
D Bang, H Shim, International Conference on Machine Learning 2018 (ICML), 2018/7.

Face Generation for Low-Shot Learning Using Generative Adversarial Networks
J Choe, S Park, K Kim, JH Park, D Kim, H Shim, 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), 1940-1948, 2017/10.

Data-driven Approach to Aesthetic Enhancement
J Choi, S Koh, J Kwack, Y Kwon, H Shim, Electronic Imaging 2016 (14), 1-5 

Developing a Visual Stopping Criterion for Image Mosaicing Using Invariant Color Histograms
A Elibol, H Shim, Pacific Rim Conference on Multimedia, 350-359, 2015.

Depth image enhancement using perceptual texture priors
D Bang, H Shim, Human Vision and Electronic Imaging XX 9394, 93941C, 2015/2.


3D motion artifact compenstation in CT image with depth camera
Y Ko, J Baek, H Shim, Image Processing: Machine Vision Applications VIII 9405, 94050R, 2015/2.

Estimating All Frequency Lighting Using A Color/Depth Image 
 H Shim (To appear), IEEE International Conference on Image Processing (ICIP), 2012

An Example-based Face Relighting
 H Shim, T Chen, Proceedings of SPIE 8289, 82890B, 2012
 
Automatic Color Realism Enhancement for Virtual Reality
 H Shim, S Lee, IEEE Virtual Reality, 2012
 
Light Weight Multiview Capturing
 H Shim, T Chen, S Lee, JD Kim, C Kim, IEEE Consumer Communications and Networking Conference (CCNC), pp. 25 - 29, 2012
 
A Probabilistic Approach to Realistic Face Synthesis
 H Shim, I Ha, T Rhee, JD Kim, C Kim,  IEEE International Conference on Image Processing (ICIP), pp. 1817-1820, 2010
 
Adaptive Environment Map for Relighting: Using Cameras and Projected Light
 H Shim, T Chen, IEEE Computer Vision and Pattern Recognition Workshop, 2006
 
 H Shim, T Chen, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005
 
 H Shim, T Chen, Proc. Picture coding symposium