Preprints
- J. Lierl, Local behavior of solutions of quasilinear
parabolic equations on metric space, submitted
2017, arxiv:1708.06329
- J. Lierl, The Dirichlet heat kernel in inner uniform
domains in fractal-type spaces, to appear in Potential Analysis
Publications
- J. Lierl, Parabolic Harnack inequality for
time-dependent non-symmetric Dirichlet forms, J. Math. Pures Appl., in press (2020), https://doi.org/10.1016/j.matpur.2020.01.001
- A. Biswas, J. Lierl, Faber-Krahn type inequalities and
uniqueness of positive solutions on metric measure spaces, J. Funct. Anal. 278 (2020), no. 8, 108429, 43 pp.
- J. Lierl, S. Steinerberger, A Local Faber-Krahn
inequality and Applications to Schrödinger's Equation, Comm.
Partial Differential Equations 43 (2018), no.1, 66-81.
- J. Lierl, K.-T. Sturm, Neumann heat flow and gradient
flow for the entropy on non-convex domains, Calc.
Var. Partial Differential Equations 57 (2018), no.1,
Art. 25, 22pp.
- J. Lierl, Parabolic Harnack inequality on fractal-type
metric measure Dirichlet spaces, Rev. Mat. Iberoam.
34 (2018), no.2, 687–738.
- J. Lierl, Scale-invariant boundary Harnack principle
on inner uniform domains in fractal-type spaces, Potential
Analysis 43 (2015), no. 4, 717–747. Originally submitted version
- J. Lierl, L. Saloff-Coste, The
Dirichlet heat kernel in inner uniform domains: local
results, compact domains and non-symmetric forms, J. Funct. Anal. 266 (2014), no.
7, 4189–4235.
- J. Lierl, L. Saloff-Coste, Scale-invariant boundary
Harnack principle in inner uniform domains, Osaka
J. Math. 51 (2014), no. 3, 619–656.
- F. Conrad, M. Grothaus, J. Lierl, O. Wittich, Convergence
of Brownian motion with a scaled Dirac delta potential,
Proc. Edinb. Math. Soc. (2) 55 (2012), no. 2, 403–427.
Google scholar profile |
|