Hello (안녕하세요/in Korean). I am an Assistant Director - Research at Moody's Analytics, San Francisco. Before that, I was a Simons Postdoctoral Fellow and a Lecturer at The University of Texas at Austin during September 2015 - August 2017. 

Disclaimer: The views expressed in this website are solely those of me and do not represent views of Moody's Analytics and its parent company (Moody's Corporation), or its affiliates.

Name : Jae Oh Woo (Korean - 우재오)


I finished Ph.D. in Applied Mathematics Program at Yale University and B.S. in Mathematics at Korea Advanced Institute of Science and Technology (KAIST).

I am an applied mathematician specializing in Applied Probability including Information Theory, Stochastic Geometry, and Combinatorics. I am interested in not only theoretical problems but interdisciplinary problems in both mathematics and engineering. I deeply enjoy mathematical challenges to understand the underlying nature behind. [More Information]

My CV is available here (as of May, 2017).

News  
- April. 2017, invited to give a talk about On Entropy Inequalities of Sums in Prime Cyclic Groups at Workshop on Information-Theoretic Inequalities, University of Delaware.
- Feb. 2017, nominated/invited to Graduation Day at Information Theory and Applications Workshop 2017, San Diego
- Jan. 2017, submitted a paper "Modeling a Spatially Correlated Cellular Network with Strong Repulsion" to a journal [arXiv:1701.02261]
- Oct. 2016, gave a talk about Entropy and Mutual Information of Point Processes at Random Structure seminar, UT Austin.
- July. 2016, participated in Geometric Functional Analysis Workshop in Analysis and Probability, Texas A&M University
- July. 2016, gave a presentation about Entropy and Mutual Information of Point Processes at  IEEE International Symposium on Information Theory 2016, Barcelona, Spain.
- June. 2016, participated in/gave a poster presentation at North-American School of Information Theory 2016, Duke University.
- March. 2016, invited to give a talk about Discrete Entropy Power Inequalities at Probability & Algebra and Combinatorics Seminar Texas A&M University
Comments