Решетки, алгоритмы и современная криптография

  Курс лекций «Решетки, алгоритмы и современная криптография»

лекторы:   к. ф.-м. н. А. В. Шокуров, д. ф.-м. н. Н. Н. Кузюрин

Семестровый спецкурс по выбору для студентов 4—6 курсов МФТИ.

Цель курса — показать как такое классическое понятие алгебры как решетка применяется в современной криптографии, определяя, по-существу, самое перспективное направление ее развития. В курсе

  • Кратко прослеживаются основные этапы развития криптографии как науки — от древних времен до современных криптосистем с секретным и открытым ключом.
  • Показана связь стойкости криптосистем с вычислительно трудными проблемами алгебры и теории чисел, в частности, проблемой вычисления дискретного логарифма и проблемой факторизации натуральных чисел. Обсуждается связь сложности в худшем случае и сложности в среднем, вводится основной примитив современной криптографии — понятие односторонней функции.
  • Обсуждаются слабости и недостатки в обосновании стойкости современных криптосистем, в частности, в свете результатов П. Шора о полиномиальных квантовых алгоритмах вычисления дискретного логарифма и факторизации чисел. 

Основная часть курса посвящена изложению идей современного направления, зародившегося в конце 20-го века, и базирующегося на фундаментальных результатах венгерского математика Айтаи, которое на Западе получило название «Lattice based cryptography».
  • Излагаются  сведения из теории колец, полей и решеток, необходимые для описания основных результатов и связанные, в частности,с понятием кольца, конечного поля и расширения полей, приведенного базиса решетки, критерием полноты решетки и леммой Минковского.
  • Излагаются алгоритмические аспекты теории решеток и их применение в криптографии, в частности, сложность решения систем линейных диофантовых уравнений, сложность нахождения кратчайшего ненулевого вектора решетки и вектора решетки, ближайшего к заданному вектору, известные приближенные алгоритмы для этих задач.
  • Формулируются результаты Айтаи (Miklós Ajtai ) о сложности поиска короткого вектора в случайной решетке.
  • Описаны некоторые современные криптосистемы на решетках: NTRU и другие.
  • Показана роль алгебраических методов в доказательстве полиномиальной разрешимости проверки простоты чисел. 

Организационные вопросы

Место чтения курса - ИСП РАН (Москва, м. Таганская, Большая Коммунистическая, д. 25).

Комната 110 или 301.


Время — по понедельникам,  в 14:00. 

Драфт лекций-пособия приложен (Attachments) ниже к этой странице.

Будем рады ответить на любые вопросы — пишите на fomin@ispras.ru координатору курса Станиславу Фомину.

Список студентов.

Google Spreadsheet


Ċ
Stas Fomin,
Jun 10, 2008, 12:49 PM
Comments