Curriculum Vitae

Publications
  • I. García-Marco, P. Koiran, T. Pecatte. Reconstruction algorithms for sums of affine powers. ArXiv:1607.05420 [cs.CC]. Conference version: ISSAC 2017, pp. 317-324,  http://dx.doi.org/10.1145/3087604.3087605
  • I. Bermejo, E. García-Llorente, I. García-Marco, M. Morales. Noether resolutions in dimension 2. J. Algebra 482 (2017), 398-426.
  • I. García-Marco, P. Koiran, T. Pecatte, S. Thomassé. On the complexity of partial derivatives. 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017) Leibniz International Proceedings in Informatics (LIPIcs) 66 (2017), 37:1-37:13.
  • I. Bermejo, E. García-Llorente, I. García-Marco. Algebraic invariants of projective monomial curves associated to generalized arithmetic sequences. Journal of Symbolic Computation 81 (2017), 1-19
  • I. García-Marco, P. Koiran, Lower bounds by Birkhoff interpolation. Journal of Complexity 39 (2017), 38-50.
  • I. García-Marco, J. L. Ramírez Alfonsín, Ø. J. Rødseth. Numerical semigroups II: pseudo-symmetric AA-semigroups. J. Algebra 470 (2017), 484–498.
  • I. García-Marco, K. Knauer. Graph drawings with vertices and edges in convex position. Journal version:Computational Geometry 58 (2016) 25–33 . Conference version: LNCS 9411, pages 348-359, GD, (2015).
  • I. García-Marco, J. L. Ramírez Alfonsín. Matroid toric ideals: complete intersections, minors and minimal systems of generators. SIAM J. Discrete Math. 29 (2015), no. 4, 2267–2276. 
  • I. García-Marco, P. Koiran, S. Tavenas, Log-concavity and lower bounds for arithmetic circuits. Italiano et al. (Eds.): MFCS 2015, Part II, LNCS 9235, pp. 361–371, 2015.  
  • J. Chappelon, I. García-Marco, L. P. Montejano, J. L. Ramírez Alfonsín. Möbius function of semigroup posets through Hilbert series. J. Combin. Theory Ser. A 136 (2015), 238–251. 
  • I. Bermejo, I. García-Marco, E. Reyes. Graphs and complete intersection toric ideals. J. Algebra Appl. 14 (2015), no. 9, 1540011, 37 pp. 
  • I. Bermejo, I. García-Marco. Complete intersections in simplicial toric varieties. J. Symbolic Comput. 68 (2015), part 1, 265-286. 
  • I. Bermejo, I. García-Marco. Complete intersections in certain affine and projective monomial curves, Bull. Braz. Math. Soc. (N.S.) 45 (2014), no.4, 599-624. 
  • I. Bermejo, I. García-Marco, J. J. Salazar-González. An algorithm for checking whether the toric ideal of an affine monomial curve is a complete intersection. J. Symbolic Comput. 42 (2007), no. 10, 971-991. 


Computer libraries
  • I. Bermejo, I. García-Marco. cisimplicial.lib. A library for C++ and SINGULAR (available at www.singular.uni-kl.de), for checking whether a simplicial toric ideal is a complete intersection, Its version for SINGULAR is included in the software since its version 3-1-4, 2012.
  • I. Bermejo, I. García-Marco, J. J. Salazar-González. cimonom.lib. A library for C++ and SINGULAR to check whether the toric ideal of an affine monomial curve is a complete intersection. Its version for SINGULAR is included in the software in its versions between 3-0-2 and 3-1-3.



Ph. D. Thesis

University: Universidad de La Laguna
Date: 10/07/2013