Hui GAO (高辉)

I am a postdoc fellow in University of Helsinki.

I will move to SUSTech (in Shenzhen) as an assistant professor in Fall 2019.
Currently we have Yong Hu and Yannan Qiu in the number theory group.

Research interests: Algebraic number theory. In particular: p-adic Galois representations,  p-adic Hodge theory, and p-adic  Langlands program. 

Email: (permanent email)  mathnature  AT  gmail   DOT com

              (University email)     hui.gao   AT   helsinki   DOT fi

ContactDepartment of Mathematics and Statistics, 

                FIN-00014 University of Helsinki, Finland



Brief CV     (Full CV in pdf (2019.2) 

  • 2019.9--             (tenure-track) assistant professor, SUSTech

  • 2016.9--2019.8. Postdoc fellow at University of Helsinki (mentor: Kari Vilonen)
  • 2013.7--2016.6. Postdoc fellow at BICMR, Peking University (mentor: Ruochuan Liu)
  • 2007.9--2013.5. PhD of Mathematics, Purdue University (advisor: Tong Liu)
  • 2003.9--2007.6. BS of Mathematics, Nankai University

  • Publications and Preprints

  • MathSciNet: author profile page
  • ORCID:  0000-0001-9731-592X     arXiv: author identifier: gao_h_2     
  • (with Léo Poyeton,) Locally analytic vectors and overconvergent $(\varphi, \tau)$-modules to appear, 
    J. Inst. Math. Jussieu
    arxiv PDF
    Wach models and overconvergence of \'etale $(\varphi, \Gamma)$-modules preprint PDF
    Limit of torsion semi-stable Galois representations with unbounded weights Proc. Amer. Math. Soc. 146 (2018), no. 8, 3275–3283 PDF
    (with Tong Liu,) Loose crystalline lifts and overconvergence of \'etale $(\varphi, \tau)$-modules to appear,
    American Journal of Mathematics
    arxiv PDF
    Fontaine-Laffaille modules and strongly divisible modules Ann. Math. Qué. 43 (2019), no. 1, 145–159. PDF
    A note on crystalline liftings in the Qp case Bull. Soc. Math. France 146 (2018), no. 1, 141–153. arXiv:1505.00125
    A note on torsion Breuil modules in the case er=p-1 J. Number Theory 165 (2016), 290–303. arXiv:1410.3953
    (with Claus Sorensen,) Locally algebraic vectors in the Breuil-Herzig ordinary part Manuscripta Math. 151 (2016), no. 1-2, 113–131.
    Crystalline liftings and weight part of Serre's conjecture Israel J. Math. 221 (2017), no. 1, 117–164 arXiv:1504.01233
    arxiv PDF
    Galois lattices and strongly divisible lattices in the unipotent case J. Reine Angew. Math. (Crelle's Journal) 728 (2017), 263–299.  arXiv:1305.2664
    arxiv PDF
    (with Tong Liu,) A Note on Potential Diagonalizability of Crystalline Representations Mathematische Annalen, 2014, Vol. 360, pp 481-487. arXiv:1204.4704
    arxiv PDF

  • Some work in progress
    Adapted bases of Kisin modules and Serre weights in revision arXiv:1505.02664
    Weight cycling and Serre weights for U(3) in preparation

  • Seminar/Conference talks, participation

  • Recent Teaching:
  • Spring 2017, Univ. of Helsinki,  Elementary algebraic number theory
  • Spring 2018, Univ. of Helsinki,  Introduction to elliptic curves and modular forms
  • Fall 2018, Univ. of Helsinki, Topics in Algebra

  • Some book suggestions to learn number theory