Via Bonardi 9, 20133 Milano, Italy

                   
  Tel: +39 02 2399 4615
  Office: 524
  Email: giovanni<dot>catino<at>polimi<dot>it

 




 


 Curriculum:  eng 
 
 
 
 Research Interests:
Differential Geometry, Riemannian Geometry and Nonlinear Partial Differential Equations



 Teaching:  link



 Published/accepted papers:
  1. Conformal deformations of integral pinched 3-manifolds (with Z. Djadli), Adv. Math. 223 (2010),  no. 2, 393-404.
  2. On Perelman’s dilaton (with M. Caldarelli, Z. Djadli, A. Magni and C. Mantegazza), Geom. Ded. 145 (2010), 127-137.
  3. Integral pinching results for manifolds with boundary (with C.B. Ndiaye), Ann. Sc. Norm. Super. Pisa Cl. Sci. 9 (2010),  no. 4, 785-813.
  4. A sphere theorem on locally conformally flat even-dimensional manifolds (with Z. Djadli and C.B. Ndiaye), Manuscripta Math. 136 (2011),  no. 1-2, 237-247.
  5. The evolution of the Weyl tensor under the Ricci flow (with C. Mantegazza), Ann. Inst. Fourier 61 (2011) no. 4, 1407-1435.
  6. Locally conformally flat quasi-Einstein manifolds (with C. Mantegazza, L. Mazzieri and M. Rimoldi), J. Reine Angew. Math. 2013 (2013), no. 675, 181-189.
  7. Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012), no. 3-4, 751-756.
  8. Connected sum construction for sigma_k–Yamabe metrics (with L. Mazzieri), J. Geom. Anal. 23 (2013), no. 2, 812-854.
  9. Complete gradient shrinking Ricci solitons with pinched curvature, Math. Ann. 355 (2013), no. 2, 629-635.
  10. On the global structure of conformal gradient solitons with nonnegative Ricci tensor (with C. Mantegazza and L. Mazzieri), Comm. Cont. Math. 14 (2012), no. 6, 1250045. 
  11. A note on four dimensional (anti-)self-dual quasi-Einstein manifoldsDifferential Geom. Appl. 30 (2012), 660-664.
  12. Bach-flat gradient steady Ricci solitons (with H.-D. Cao, Q. Chen, C. Mantegazza and L. Mazzieri), Calc. Var. Partial Differential Equations 49 (2014) no. 1-2, 125-138.
  13. Critical metrics of the $L^2$-norm of the scalar curvatureProc. Amer. Math. Soc.142 (2014), 3981-3986.
  14. A note on Codazzi tensors (with C. Mantegazza and L. Mazzieri), Math. Ann. 362 (2015), no. 1-2, 629-638.
  15. Rigidity of gradient Einstein shrinkers (with L. Mazzieri e S. Mongodi), Comm. Cont. Math. 17 (2015), no. 6, 1550046. 
  16. Locally conformally flat ancient Ricci flows (with C. Mantegazza and L. Mazzieri), Anal. PDE 8 (2015), no. 2, 365-371.
  17. Conformal Ricci solitons and related integrability conditions (with P. Mastrolia, D. Monticelli and M. Rigoli), Adv. Geom. 16 (2016), no. 3, 301-328.
  18. Some rigidity results on critical metrics for quadratic functionalsCalc. Var. Partial Differential Equations 54 (2015), no. 3, 2921-2937.
  19. A variational characterization of flat spaces in dimension three (with P. Mastrolia and D. Monticelli), Pac. J. Math. 282 (2016), no. 2, 285-292.
  20. On conformally flat manifolds with constant positive scalar curvatureProc. Amer. Math. Soc. 144 (2016), 2627-2634.
  21. Gradient Einstein solitons (with L. Mazzieri), Nonlinear Anal. 132 (2016), 66-94.
  22. Analytic and geometric properties of generic Ricci solitons (with P. Mastrolia, D. Monticelli and M. Rigoli), Trans. Amer. Math. Soc. 368 (2016), 7533-7549.
  23. Classification of expanding and steady Ricci solitons with integral curvature decay (with P. Mastrolia and D. Monticelli), Geom. Topol. 20 (2016), no. 5, 2665-2685.
  24. A remark on compact hypersurfaces with constant mean curvature in space forms, Bull. Sci. Math. 140 (2016), no. 8, 901-907.
  25. Gradient Ricci solitons with vanishing conditions on Weyl (with P. Mastrolia, D. Monticelli), J. Math. Pures Appl., to appear.
  26. On the geometry of gradient Einstein-type manifolds (with P. Mastrolia, D. Monticelli and M. Rigoli), Pac. J. Math. 286 (2017), no. 1, 39-67.
  27. Integral pinched shrinking Ricci solitons, Adv. Math. 303 (2016), 279-294.
  28. The Ricci-Bourguignon flow (with L. Cremaschi, C. Mantegazza, Z. Djadli and L. Mazzieri), Pac. J. Math., to appear.