H.K. Kesavan Publications


[1] G. C. Andrews and H. K. Kesavan. VECNET: A Simulation Programme
for Three–Dimensional Mechanical Systems. In Proceedings, Canadian
Congress of Applied Mechanics, May 1971. Calgary.

[2] G. C. Andrews and H. K. Kesavan. The Principle of Orthogonality: A
More General Form of the Principle of Virtual Work. In The 4th Canadian
Congress of Applied Mechanics, June 1973. Montreal.

[3] G. C. Andrews and H. K. Kesavan. The Vector Network Model: A New
Approach to Vector Dynamics. Mechanism and Machine Theory, 10, 1975.
The Journal of the International Federation for the Theory of Machine and
Mechanisms.

[4] G. C. Andrews and H. K. Kesavan. Simulation of Multi–body Systems using
the Vector–Network Model. In IUTAM Symposium, Munich 1977, 1977.
Invited paper – reprint from Dynamics of Multi–body Systems, Springer–
Verlag, Berlin–Heidelberg, New York.

[5] G. Baciu, J. C. K. Chou, and H. K. Kesavan. Constrained Multibody
Systems: Graph–Theoretic Newton–Euler Formulation. IEEE Trans. on
Systems, Man, and Cybernetics, 20(5):1025–1048, Sep. 1990.

[6] G. Baciu, F. J. Henigman, R. H. Bartels, and Kesavan H. K. A formal
approach to modeling and animation of physically–based systems. In Eu-
rographics 92 Third Workshop on Animation and Simulation, Cambridge,
England, Sep. 5-6 1992.

[7] G. Baciu and H. K. Kesavan. A Unified Graph–Theoretic Approach for
Spatial Multibody Systems. ASME Journal of Dynamic Systems, Mea-
surement and Control, submitted Jan., 1990.

[8] G. Baciu and H. K. Kesavan. From unidimensional to multidimen-
sional physical systems: graph–theoretic modeling. In Ninth International
Congress of Cybernetics and Systems, volume submitted August 1992., New
Delhi, India, Jan. 18-23 1993.

[9] M. V. Bhat and H. K. Kesavan. Piecewise Load–Flow Solution Based on
Newton–Raphson Method. In IEEE Summer Power Meeting, San Fran-
cisco, 1972. C72-422-2.

[10] M. V. Bhat and H. K. Kesavan. Piecewise Solution Based on Equivalent
Networks Newton–Raphson Method. In IEEE Winter Power Meeting, New
York, 1972. C72-134-0.

[11] M. V. Bhat and H. K. Kesavan. Diakoptics Methods for Sensitivity Analysis
of Load–Flow. In IEEE PES, 1973.

[12] M. V. Bhat and H. K. Kesavan. Sensitivity Analysis of Load–Flow Solu-
tions. In IEEE PES Summer Meeting, Vancouver, 1973.

[13] M. V. Bhat and H. K. Kesavan. Z–Diakoptics in Sensitivity Studies. In
IEEE PES Winter Meeting, New York, 1973. C73-082-5.

[14] M. V. Bhat and H. K. Kesavan. Diakoptic Equations and Sparsity. IEEE
PES, July 1974.

[15] M. V. Bhat and H. K. Kesavan. Sparse Matrix Techniques in the Theory
of Decomposition. IEEE PAS, San Francisco, July 1975.

[16] M. V. Bhat, H. K. Kesavan, and R. Divi. A Unified Treatment of Piecewise
Methods of Load–Flow: Exact Models. In IFAC Proceedings, New Delhi,
Aug. 1979.

[17] M. V. Bhat, J. P. Robinson, H. K. Kesavan, and K. D. Srivatsava. A
Digital Simulation of L’ring of Multi–Stage Marx Generator. IEEE PES,
July 1974.

[18] W. A. Blackwell and H. K. Kesavan. Simplification of the Analysis of Large
Systems by Linear Graph Techniques. The Matrix and Tensor Quarterly,
U.K., Sep. 1960.

[19] M. Chandrashekar and H. K. Kesavan. A Generalized Compensation The-
orem and its Application to Power Networks. In Int. Symp. on Systems
Engineering and Analysis, Oct. 1972. Purdue University, U. S. A.

[20] M. Chandrashekar and H. K. Kesavan. Network Sensitivity Simplified. In
IEEE Proceedings, volume 62, Aug. 1974.

[21] M. Chandrashekar and H. K. Kesavan. On the Existence of Solutions to
Linear Active Networks: A State Space Approach. Int. Journal on Circuit
Theory and Applications, 2:331–340, 1974.

[22] M. Chandrashekar and H. K. Kesavan. Graph–theoretic State Models for
the Piecewise Analysis of Large–scale Electrical Networks. Int. Journal on
Circuit Theory and Applications, 5:23–34, 1977.

[23] M. Chandrashekar, H. K. Kesavan, and T. E. Unny. A Computer Pro-
gramme for the Diakoptic Analysis of Large Pipe Networks. In DOLFIN,
Int. Symp. on Systems Engineering and Analysis, Oct. 1973. Purdue Uni-
versity, U. S. A.

[24] M. Chandrashekar, H. K. Kesavan, and T. E. Unny. SYSTEM: A student
package for the Analysis of Nonlinear Systems. IEEE Transactions on
Education, Feb. 1973.

[25] J. C. K. Chou, G. Baciu, and H. K. Kesavan. Computational Scheme
for Simulating Robot Manipulators. In IEEE International Conference on
Robotics and Automation, volume 2, pages 961–967. IEEE, 1987.

[26] J. C. K. Chou, G. Baciu, and H. K. Kesavan. Graph-Theoretic Models
for Simulating Robot Manipulators. In IEEE International Conference on
Robotics and Automation, volume 2, pages 953–960. IEEE, 1987.

[27] J. C. K. Chou, H. K. Kesavan, and K. Singhal. A Systems Approach to 3–D
Multi–body Systems using Graph-Theoretic Models. IEEE Trans. Systems
Man and Cybernetics, SMC-16(2):219–230, 1986.

[28] J. C. K. Chou, H. K. Kesavan, and K. Singhal. A Systems Approach to
3-D Multi-Body Systems Using Graph-Theoretic Models. IEEE Trans. on
Systems, Man, and Cybernetics, SMC-16(2):219–230, 1986.

[29] J. C. K. Chou, H. K. Kesavan, and K. Singhal. Dynamics of 3-D Iso-
lated Rigid-Body Systems: Graph–Theoretic Models. J. Mechanism and
Machine Theory, 21(3):261–272, 1986.

[30] J. C. K. Chou, K. Singhal, and H. K. Kesavan. Multi-Body Systems with
Open Chains: Graph-Theoretic Models. J. Mechanism and Machine The-
ory, 21(3):273–284, 1986.

[31] R. Divi and H. K. Kesavan. Decomposition in Optimal Load–Flow. IEEE
PAS, Summer Meeting, New York, 1976.

[32] R. Divi and H. K. Kesavan. A Shifted Penalty Function Approach for
Optimal Load–Flow. IEEE PES Winter Power Meeting, Jan./Feb. 1982.

[33] R. Divi and H. K. Kesavan. A Shifted Penalty Function Approach for
Optimal Load–Flow. IEEE Transactions on Power Apparatus and Systems,
PAS–101(9):3502–3510, Sep. 1982.

[34] H.K.Kesavan and J.N.Kapur. The Generalized Maximum Entropy Princi-
ple. IEEE Trans. Syst. Man. Cyb. 19, pages 1042–1052, 1989.

[35] H.K.Kesavan and J.N.Kapur. Maximum Entropy and Minimum Cross En-
tropy Principles: Need for a Broader Perspective. In Paul F. Fougere,
editor, Maximum Entropy and Bayesian Methods, pages 419–432. Kluwer
Academic Publishers, 1990.

[36] H.K.Kesavan and J.N.Kapur. On the Family of Solutions of Generalized
Maximum and Minimum Cross-Entropy Models. Int. Jour. Gen. Systems
vol. 16, pages 199–219, 1990.

[37] J.N.Kapur and H.K.Kesavan. Inverse MaxEnt and MinxEnt Principles
and their Applications. In Paul F. Fougere, editor, Maximum Entropy and
Bayesian Methods, pages 433–450. Kluwer Academic Publishers, 1990.

[38] J. N. Kapur, G. Baciu, and H. K. Kesavan. Maximum entropy probability
distributions in the presence of inequality constraints. Operations Research,
1992.

[39] J. N. Kapur, G. Baciu, and H. K. Kesavan. On the relationship between
variance and minimum entropy. IEEE Trans. on Systems, Man and Cyber-
netics, 1992.

[40] J. N. Kapur, G. Baciu, and H. K. Kesavan. The MinMax Entropy Measure.
IEEE Trans. on Systems, Man and Cybernetics, 1992.

[41] J. N. Kapur and H. K. Kesavan. The Generalized Maximum Entropy Prin-
ciple (with applications). Sandford Educational Press, University of Wa-
terloo, Nov. 1987. Research Monograph.

[42] J. N. Kapur and H. K. Kesavan. A New Approach to the Study of Proba-
bilistic Systems in Science and Technology. International Journal of Man-
agement and Systems, 4(1), Jan.–Apr. 1988.

[43] J. N. Kapur and H. K. Kesavan. Entropy Optimization Principles With
Applications. Academic Press, 1992.

[44] H. K. Kesavan. Selecting the Type of Electrical Equipment for Production
in Developing Countries: Identification and Discussion of Relevant Criteria
and Factors. Technical report, United Nations, New York, 1966.

[45] H. K. Kesavan. Computer Education in a Developing Country. Technical
report, United Nations, 1971.

[46] H. K. Kesavan and M. V. Bhat. Multi–level Tearing and Applications.
IEEE Transactions, PAS–92, 1974. discussion.

[47] H. K. Kesavan and M. V. Bhat. Piecewise Newton–Raphson Method: An
Exact Model. IEEE PES Winter Meeting, New York, 1974.

[48] H. K. Kesavan and M. Chandrashekar. Graph–Theoretic Models for Pipe
Networks. ASCE Journal of Hydraulics, Feb. 1972.

[49] H. K. Kesavan and J. Dueckman. Multi–terminal Representations and
Diakoptics. Journal of the Franklin Institute, 313(6):337–352, 1982.

[50] H. K. Kesavan and J. N. Kapur. The Generalized Maximum Entropy Prin-
ciple. IEEE Journal on Systems, Man and Cybernetics, 19(5), 1989.

[51] H. K. Kesavan and J. N. Kapur. On the Families of Solutions to Generalized
Maximum Entropy and Minimum Cross–Entropy Problems. International
Journal of General Systems, 16, 1990.

[52] H. K. Kesavan and H. E. Koenig. Multi–Terminal Representations in Elec-
tronic Circuits. Proceedings of the Fourth Midwest Symposium on Circuit
Theory, Dec. 1959.

[53] H. K. Kesavan and H. E. Koenig. A New Criterion For Satisfactory Com-
mutations. Transactions of AIEE, Sep. 1960.

[54] H. K. Kesavan and H. E. Koenig. Digital Techniques in Commutation
Design. Transactions of AIEE, Sep. 1960.

[55] H. K. Kesavan and B. R. Myers. Systems Theory in a Unified Curriculum.
PGE, IRE, Sep. 1961.

[56] H. K. Kesavan, M. A. Pai, and M. V. Bhat. Graph–Theoretic Models in
Computer Simulation of Power Systems. PICA, Boston, 1971.

[57] H. K. Kesavan, M. A. Pai, and M. V. Bhat. Graph–Theoretic Models in
Computer Simulation of Power Systems. IEEE Trans. PAS, 1972.

[58] H. K. Kesavan and P. H. Roe. Systems Engineering Education at Water-
loo. In Proceedings of the International Conference on Systems, Man and
Cybernetics, pages 801–805, Oct. 1980.

[59] H. K. Kesavan and P. H. Roe. Graph–Theoretic Modelling of Physical Sys-
tems: Unifying Concepts. In Proceedings of the International Conference
on Computers, Systems and Signal Processing, Bangalore, India, volume 2,
pages 515–519, Dec. 10–12 1984. (invited paper).

[60] H. K. Kesavan and H. V. Sahasrabuddhe. Network Sensitivity Minimiza-
tion: An Alternate Formulation. In Proceedings of the Third Annual Prince-
ton Conference on Information Sciences and Systems, 1969.

[61] H. K. Kesavan and H. V. Sahasrabuddhe. Network Models for Co–state
Equations of Linear and Nonlinear Systems. Int. J. Control, 1970.

[62] H. K. Kesavan, I.G. Sarma, and U. R. Prasad. Sensitivity State Models for
Linear Systems. Int. J. Control, 9(3), Nov. 1969.

[63] H. K. Kesavan and W. J. Vetter. Sensitivity Models for Computer–Aided
Design. Twelfth Midwest Symposium on Circuit Theory, Apr. 1969.

[64] H. E. Koenig, Y. Tokad, and H. K. Kesavan. Analysis of Discrete Physical
Systems. McGraw Hill, 1967.

[65] V. K. Madan, G. J. Savage, and H. K. Kesavan. Applications of Multi–
terminal Representations to Magnetic Fields. In Proceedings of the 2nd
International Symposium on Large Engineering Systems, University of Wa-
terloo, May 1978.

[66] V. K. Madan, G. J. Savage, and H. K. Kesavan. Applications of Multi–
terminal Representations to Magnetic Fields. IEEE Transactions on Mag-
netics, pages 1096–1102, May 1979.

[67] K. Palaniappan and H. K. Kesavan. Iterative Entropic Measures for Model
under Estimation. In Proceedings of the International Conference on Com-
puters, Systems and Signal Processing, Bangalore, India, volume 3, pages
1765–1772, Dec. 10–12 1984.

[68] K. Palaniappan and H. K. Kesavan. Model Order Selection Using the En-
tropy Function. In Fourth Workshop on Maximum Entropy and Bayesian
Methods in Inversion, Calgary, Canada, Aug. 5–8 1984.

[69] V. S. Rathore and H. K. Kesavan. Generalization of the Compensation
Theorem for Multi–parameter Variations. In Proceedings of I.C.C.S.T.,
Koyoto, Sep. 1970.

[70] P. H. Roe and H. K. Kesavan. Experience with a Systems Engineering
Curriculum. In Proceedings of the International Conference on Systems,
Man and Cybernetics, pages 306–311, Oct. 1981.

[71] H. V. Sahasrabuddhe and H. K. Kesavan. Sensitivity Minimization of Pas-
sive Networks. In Proceedings of the 5th Annual Conference of the Com-
puter Society of India, Jan. 1970.

[72] G. J. Savage and H. K. Kesavan. A Graph–Theoretical Approach to Field
Problems. In International Conference on Numerical Methods in Electrical
and Magnetic Field Problems, St. Mangtiovita, Italy, June 1976. Sponsored
by the Intenational Committee for Computer–Aided Design.

[73] G. J. Savage and H. K. Kesavan. A Unified Discrete Model for Field Prob-
lems. In Proceedings of the International Symposium on Large Engineering
Systems University of Manitoba, Canada, Aug. 9–12 1976.

[74] G. J. Savage and H. K. Kesavan. The Finite–Element Method and Multi–
terminal Representations. In Proceedings of the Nineteenth Midwest Sym-
posium on Circuit and Systems Theory, Milwaukee, U.S.A., Aug. 1976.

[75] G. J. Savage and H. K. Kesavan. Direct–Discrete Models of Field and
Continuum Problems. In Proceedings of the Fourth National Systems Con-
ference, PSC Col lege of Technology, India, June 1977.

[76] G. J. Savage and H. K. Kesavan. The Graph–Theoretic Field Model I,
Modelling and Formulations. Journal of the Franklin Institute, 302:107–
147, Feb. 1979.

[77] G. J. Savage and H. K. Kesavan. The Graph–Theoretic Field Model II,
Application of Multi–Terminal Representations to Field Problems. Journal
of the Franklin Institute, pages 241–266, 1980.

[78] G. J. Savage and H. K. Kesavan. Discrete Analogues of Green’s Identi-
ties through the Graph–Theoretic Field Model. Journal of the Franklin
Institute, 313(1):17–39, Jan. 1982.

[79] G. J. Savage and H. K. Kesavan. Quasi–power functionals for potential
fields from the Graph–theoretic field model. Journal of the Franklin Insti-
tute, 314(4):219–229, Oct. 1982.

[80] G. J. Savage and H. K. Kesavan. Variational Principle for Potential Fields.
Journal of the Franklin Institute, 314(1):41–54, July 1982.

[81] G. J. Savage, V. K. Madan, and H. K. Kesavan. The Magnetic Field
Problem: A graph–theoretic model. IEEE Transactions on Magnetics,
MAG16(4):579–585, July 1980.

[82] A. K. Seth and H. K. Kesavan. On Time–Domain Network Sensitivity.
International Journal of Electronics, U.K., 35(1):81–96, 1973.

[83] K. Singhal, H. K. Kesavan, and Z. I. Ahamad. Vector Network Models for
Kinematics: The Four–Bar Mechanism. Mechanism and Machine Theory,
18(5):363–369, 1983.

[84] Y. Tokad and H. K. Kesavan. On the Analysis and Synthesis of Induction
Networks. AIEE, June 1962.