[1] G. C. Andrews and H. K. Kesavan. VECNET: A Simulation Programme for Three–Dimensional Mechanical Systems. In Proceedings, Canadian Congress of Applied Mechanics, May 1971. Calgary. [2] G. C. Andrews and H. K. Kesavan. The Principle of Orthogonality: A More General Form of the Principle of Virtual Work. In The 4th Canadian Congress of Applied Mechanics, June 1973. Montreal. [3] G. C. Andrews and H. K. Kesavan. The Vector Network Model: A New Approach to Vector Dynamics. Mechanism and Machine Theory, 10, 1975. The Journal of the International Federation for the Theory of Machine and Mechanisms. [4] G. C. Andrews and H. K. Kesavan. Simulation of Multi–body Systems using the Vector–Network Model. In IUTAM Symposium, Munich 1977, 1977. Invited paper – reprint from Dynamics of Multi–body Systems, Springer– Verlag, Berlin–Heidelberg, New York. [5] G. Baciu, J. C. K. Chou, and H. K. Kesavan. Constrained Multibody Systems: Graph–Theoretic Newton–Euler Formulation. IEEE Trans. on Systems, Man, and Cybernetics, 20(5):1025–1048, Sep. 1990. [6] G. Baciu, F. J. Henigman, R. H. Bartels, and Kesavan H. K. A formal approach to modeling and animation of physically–based systems. In Eu- rographics 92 Third Workshop on Animation and Simulation, Cambridge, England, Sep. 5-6 1992. [7] G. Baciu and H. K. Kesavan. A Uniﬁed Graph–Theoretic Approach for Spatial Multibody Systems. ASME Journal of Dynamic Systems, Mea- surement and Control, submitted Jan., 1990. [8] G. Baciu and H. K. Kesavan. From unidimensional to multidimen- sional physical systems: graph–theoretic modeling. In Ninth International Congress of Cybernetics and Systems, volume submitted August 1992., New Delhi, India, Jan. 18-23 1993. [9] M. V. Bhat and H. K. Kesavan. Piecewise Load–Flow Solution Based on Newton–Raphson Method. In IEEE Summer Power Meeting, San Fran- cisco, 1972. C72-422-2. [10] M. V. Bhat and H. K. Kesavan. Piecewise Solution Based on Equivalent Networks Newton–Raphson Method. In IEEE Winter Power Meeting, New York, 1972. C72-134-0. [11] M. V. Bhat and H. K. Kesavan. Diakoptics Methods for Sensitivity Analysis of Load–Flow. In IEEE PES, 1973. [12] M. V. Bhat and H. K. Kesavan. Sensitivity Analysis of Load–Flow Solu- tions. In IEEE PES Summer Meeting, Vancouver, 1973. [13] M. V. Bhat and H. K. Kesavan. Z–Diakoptics in Sensitivity Studies. In IEEE PES Winter Meeting, New York, 1973. C73-082-5. [14] M. V. Bhat and H. K. Kesavan. Diakoptic Equations and Sparsity. IEEE PES, July 1974. [15] M. V. Bhat and H. K. Kesavan. Sparse Matrix Techniques in the Theory of Decomposition. IEEE PAS, San Francisco, July 1975. [16] M. V. Bhat, H. K. Kesavan, and R. Divi. A Uniﬁed Treatment of Piecewise Methods of Load–Flow: Exact Models. In IFAC Proceedings, New Delhi, Aug. 1979. [17] M. V. Bhat, J. P. Robinson, H. K. Kesavan, and K. D. Srivatsava. A Digital Simulation of L’ring of Multi–Stage Marx Generator. IEEE PES, July 1974. [18] W. A. Blackwell and H. K. Kesavan. Simpliﬁcation of the Analysis of Large Systems by Linear Graph Techniques. The Matrix and Tensor Quarterly, U.K., Sep. 1960. [19] M. Chandrashekar and H. K. Kesavan. A Generalized Compensation The- orem and its Application to Power Networks. In Int. Symp. on Systems Engineering and Analysis, Oct. 1972. Purdue University, U. S. A. [20] M. Chandrashekar and H. K. Kesavan. Network Sensitivity Simpliﬁed. In IEEE Proceedings, volume 62, Aug. 1974. [21] M. Chandrashekar and H. K. Kesavan. On the Existence of Solutions to Linear Active Networks: A State Space Approach. Int. Journal on Circuit Theory and Applications, 2:331–340, 1974. [22] M. Chandrashekar and H. K. Kesavan. Graph–theoretic State Models for the Piecewise Analysis of Large–scale Electrical Networks. Int. Journal on Circuit Theory and Applications, 5:23–34, 1977. [23] M. Chandrashekar, H. K. Kesavan, and T. E. Unny. A Computer Pro- gramme for the Diakoptic Analysis of Large Pipe Networks. In DOLFIN, Int. Symp. on Systems Engineering and Analysis, Oct. 1973. Purdue Uni- versity, U. S. A. [24] M. Chandrashekar, H. K. Kesavan, and T. E. Unny. SYSTEM: A student package for the Analysis of Nonlinear Systems. IEEE Transactions on Education, Feb. 1973. [25] J. C. K. Chou, G. Baciu, and H. K. Kesavan. Computational Scheme for Simulating Robot Manipulators. In IEEE International Conference on Robotics and Automation, volume 2, pages 961–967. IEEE, 1987. [26] J. C. K. Chou, G. Baciu, and H. K. Kesavan. Graph-Theoretic Models for Simulating Robot Manipulators. In IEEE International Conference on Robotics and Automation, volume 2, pages 953–960. IEEE, 1987. [27] J. C. K. Chou, H. K. Kesavan, and K. Singhal. A Systems Approach to 3–D Multi–body Systems using Graph-Theoretic Models. IEEE Trans. Systems Man and Cybernetics, SMC-16(2):219–230, 1986. [28] J. C. K. Chou, H. K. Kesavan, and K. Singhal. A Systems Approach to 3-D Multi-Body Systems Using Graph-Theoretic Models. IEEE Trans. on Systems, Man, and Cybernetics, SMC-16(2):219–230, 1986. [29] J. C. K. Chou, H. K. Kesavan, and K. Singhal. Dynamics of 3-D Iso- lated Rigid-Body Systems: Graph–Theoretic Models. J. Mechanism and Machine Theory, 21(3):261–272, 1986. [30] J. C. K. Chou, K. Singhal, and H. K. Kesavan. Multi-Body Systems with Open Chains: Graph-Theoretic Models. J. Mechanism and Machine The- ory, 21(3):273–284, 1986. [31] R. Divi and H. K. Kesavan. Decomposition in Optimal Load–Flow. IEEE PAS, Summer Meeting, New York, 1976. [32] R. Divi and H. K. Kesavan. A Shifted Penalty Function Approach for Optimal Load–Flow. IEEE PES Winter Power Meeting, Jan./Feb. 1982. [33] R. Divi and H. K. Kesavan. A Shifted Penalty Function Approach for Optimal Load–Flow. IEEE Transactions on Power Apparatus and Systems, PAS–101(9):3502–3510, Sep. 1982. [34] H.K.Kesavan and J.N.Kapur. The Generalized Maximum Entropy Princi- ple. IEEE Trans. Syst. Man. Cyb. 19, pages 1042–1052, 1989. [35] H.K.Kesavan and J.N.Kapur. Maximum Entropy and Minimum Cross En- tropy Principles: Need for a Broader Perspective. In Paul F. Fougere, editor, Maximum Entropy and Bayesian Methods, pages 419–432. Kluwer Academic Publishers, 1990. [36] H.K.Kesavan and J.N.Kapur. On the Family of Solutions of Generalized Maximum and Minimum Cross-Entropy Models. Int. Jour. Gen. Systems vol. 16, pages 199–219, 1990. [37] J.N.Kapur and H.K.Kesavan. Inverse MaxEnt and MinxEnt Principles and their Applications. In Paul F. Fougere, editor, Maximum Entropy and Bayesian Methods, pages 433–450. Kluwer Academic Publishers, 1990. [38] J. N. Kapur, G. Baciu, and H. K. Kesavan. Maximum entropy probability distributions in the presence of inequality constraints. Operations Research, 1992. [39] J. N. Kapur, G. Baciu, and H. K. Kesavan. On the relationship between variance and minimum entropy. IEEE Trans. on Systems, Man and Cyber- netics, 1992. [40] J. N. Kapur, G. Baciu, and H. K. Kesavan. The MinMax Entropy Measure. IEEE Trans. on Systems, Man and Cybernetics, 1992. [41] J. N. Kapur and H. K. Kesavan. The Generalized Maximum Entropy Prin- ciple (with applications). Sandford Educational Press, University of Wa- terloo, Nov. 1987. Research Monograph. [42] J. N. Kapur and H. K. Kesavan. A New Approach to the Study of Proba- bilistic Systems in Science and Technology. International Journal of Man- agement and Systems, 4(1), Jan.–Apr. 1988. [43] J. N. Kapur and H. K. Kesavan. Entropy Optimization Principles With Applications. Academic Press, 1992. [44] H. K. Kesavan. Selecting the Type of Electrical Equipment for Production in Developing Countries: Identiﬁcation and Discussion of Relevant Criteria and Factors. Technical report, United Nations, New York, 1966. [45] H. K. Kesavan. Computer Education in a Developing Country. Technical report, United Nations, 1971. [46] H. K. Kesavan and M. V. Bhat. Multi–level Tearing and Applications. IEEE Transactions, PAS–92, 1974. discussion. [47] H. K. Kesavan and M. V. Bhat. Piecewise Newton–Raphson Method: An Exact Model. IEEE PES Winter Meeting, New York, 1974. [48] H. K. Kesavan and M. Chandrashekar. Graph–Theoretic Models for Pipe Networks. ASCE Journal of Hydraulics, Feb. 1972. [49] H. K. Kesavan and J. Dueckman. Multi–terminal Representations and Diakoptics. Journal of the Franklin Institute, 313(6):337–352, 1982. [50] H. K. Kesavan and J. N. Kapur. The Generalized Maximum Entropy Prin- ciple. IEEE Journal on Systems, Man and Cybernetics, 19(5), 1989. [51] H. K. Kesavan and J. N. Kapur. On the Families of Solutions to Generalized Maximum Entropy and Minimum Cross–Entropy Problems. International Journal of General Systems, 16, 1990. [52] H. K. Kesavan and H. E. Koenig. Multi–Terminal Representations in Elec- tronic Circuits. Proceedings of the Fourth Midwest Symposium on Circuit Theory, Dec. 1959. [53] H. K. Kesavan and H. E. Koenig. A New Criterion For Satisfactory Com- mutations. Transactions of AIEE, Sep. 1960. [54] H. K. Kesavan and H. E. Koenig. Digital Techniques in Commutation Design. Transactions of AIEE, Sep. 1960. [55] H. K. Kesavan and B. R. Myers. Systems Theory in a Uniﬁed Curriculum. PGE, IRE, Sep. 1961. [56] H. K. Kesavan, M. A. Pai, and M. V. Bhat. Graph–Theoretic Models in Computer Simulation of Power Systems. PICA, Boston, 1971. [57] H. K. Kesavan, M. A. Pai, and M. V. Bhat. Graph–Theoretic Models in Computer Simulation of Power Systems. IEEE Trans. PAS, 1972. [58] H. K. Kesavan and P. H. Roe. Systems Engineering Education at Water- loo. In Proceedings of the International Conference on Systems, Man and Cybernetics, pages 801–805, Oct. 1980. [59] H. K. Kesavan and P. H. Roe. Graph–Theoretic Modelling of Physical Sys- tems: Unifying Concepts. In Proceedings of the International Conference on Computers, Systems and Signal Processing, Bangalore, India, volume 2, pages 515–519, Dec. 10–12 1984. (invited paper). [60] H. K. Kesavan and H. V. Sahasrabuddhe. Network Sensitivity Minimiza- tion: An Alternate Formulation. In Proceedings of the Third Annual Prince- ton Conference on Information Sciences and Systems, 1969. [61] H. K. Kesavan and H. V. Sahasrabuddhe. Network Models for Co–state Equations of Linear and Nonlinear Systems. Int. J. Control, 1970. [62] H. K. Kesavan, I.G. Sarma, and U. R. Prasad. Sensitivity State Models for Linear Systems. Int. J. Control, 9(3), Nov. 1969. [63] H. K. Kesavan and W. J. Vetter. Sensitivity Models for Computer–Aided Design. Twelfth Midwest Symposium on Circuit Theory, Apr. 1969. [64] H. E. Koenig, Y. Tokad, and H. K. Kesavan. Analysis of Discrete Physical Systems. McGraw Hill, 1967. [65] V. K. Madan, G. J. Savage, and H. K. Kesavan. Applications of Multi– terminal Representations to Magnetic Fields. In Proceedings of the 2nd International Symposium on Large Engineering Systems, University of Wa- terloo, May 1978. [66] V. K. Madan, G. J. Savage, and H. K. Kesavan. Applications of Multi– terminal Representations to Magnetic Fields. IEEE Transactions on Mag- netics, pages 1096–1102, May 1979. [67] K. Palaniappan and H. K. Kesavan. Iterative Entropic Measures for Model under Estimation. In Proceedings of the International Conference on Com- puters, Systems and Signal Processing, Bangalore, India, volume 3, pages 1765–1772, Dec. 10–12 1984. [68] K. Palaniappan and H. K. Kesavan. Model Order Selection Using the En- tropy Function. In Fourth Workshop on Maximum Entropy and Bayesian Methods in Inversion, Calgary, Canada, Aug. 5–8 1984. [69] V. S. Rathore and H. K. Kesavan. Generalization of the Compensation Theorem for Multi–parameter Variations. In Proceedings of I.C.C.S.T., Koyoto, Sep. 1970. [70] P. H. Roe and H. K. Kesavan. Experience with a Systems Engineering Curriculum. In Proceedings of the International Conference on Systems, Man and Cybernetics, pages 306–311, Oct. 1981. [71] H. V. Sahasrabuddhe and H. K. Kesavan. Sensitivity Minimization of Pas- sive Networks. In Proceedings of the 5th Annual Conference of the Com- puter Society of India, Jan. 1970. [72] G. J. Savage and H. K. Kesavan. A Graph–Theoretical Approach to Field Problems. In International Conference on Numerical Methods in Electrical and Magnetic Field Problems, St. Mangtiovita, Italy, June 1976. Sponsored by the Intenational Committee for Computer–Aided Design. [73] G. J. Savage and H. K. Kesavan. A Uniﬁed Discrete Model for Field Prob- lems. In Proceedings of the International Symposium on Large Engineering Systems University of Manitoba, Canada, Aug. 9–12 1976. [74] G. J. Savage and H. K. Kesavan. The Finite–Element Method and Multi– terminal Representations. In Proceedings of the Nineteenth Midwest Sym- posium on Circuit and Systems Theory, Milwaukee, U.S.A., Aug. 1976. [75] G. J. Savage and H. K. Kesavan. Direct–Discrete Models of Field and Continuum Problems. In Proceedings of the Fourth National Systems Con- ference, PSC Col lege of Technology, India, June 1977. [76] G. J. Savage and H. K. Kesavan. The Graph–Theoretic Field Model I, Modelling and Formulations. Journal of the Franklin Institute, 302:107– 147, Feb. 1979. [77] G. J. Savage and H. K. Kesavan. The Graph–Theoretic Field Model II, Application of Multi–Terminal Representations to Field Problems. Journal of the Franklin Institute, pages 241–266, 1980. [78] G. J. Savage and H. K. Kesavan. Discrete Analogues of Green’s Identi- ties through the Graph–Theoretic Field Model. Journal of the Franklin Institute, 313(1):17–39, Jan. 1982. [79] G. J. Savage and H. K. Kesavan. Quasi–power functionals for potential ﬁelds from the Graph–theoretic ﬁeld model. Journal of the Franklin Insti- tute, 314(4):219–229, Oct. 1982. [80] G. J. Savage and H. K. Kesavan. Variational Principle for Potential Fields. Journal of the Franklin Institute, 314(1):41–54, July 1982. [81] G. J. Savage, V. K. Madan, and H. K. Kesavan. The Magnetic Field Problem: A graph–theoretic model. IEEE Transactions on Magnetics, MAG16(4):579–585, July 1980. [82] A. K. Seth and H. K. Kesavan. On Time–Domain Network Sensitivity. International Journal of Electronics, U.K., 35(1):81–96, 1973. [83] K. Singhal, H. K. Kesavan, and Z. I. Ahamad. Vector Network Models for Kinematics: The Four–Bar Mechanism. Mechanism and Machine Theory, 18(5):363–369, 1983. [84] Y. Tokad and H. K. Kesavan. On the Analysis and Synthesis of Induction Networks. AIEE, June 1962. |