GEOMETRIA

 
Alegoría de la Geometría.

 

La Geometría (del latín geometrĭa, que proviene del idioma griego γεωμετρία, geo tierra y metria medida), es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano o el espacio, como son: puntos, rectas, planos, politopos (paralelas, perpendiculares, curvas, superficies, polígonos, poliedros, etc).

Es la justificación teórica de la geometría descriptiva o del dibujo técnico. También da fundamento a instrumentos como el compás, el teodolito, el pantógrafo o el sistema de posicionamiento global (en especial cuando se la considera en combinación con el análisis matemático y sobre todo con las ecuaciones diferenciales).

La geometría es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto, Estrabón y Diodoro Sículo. Euclides, en el siglo III a. C. configuró la geometría en forma axiomática, tratamiento que estableció una norma a seguir durante muchos siglos: la geometría euclidiana descrita en «Los Elementos».

 

Figura geométrica:

Una figura geométrica es un conjunto cuyos elementos son puntos. La Geometría es el estudio matemático detallado de las figuras geométricas y sus características: forma, extensión, posición relativa, propiedades.

 

Punto (geometría):

En geometría, el punto es uno de los entes fundamentales, junto con la recta y el plano. Son considerados conceptos primarios, o sea, que sólo es posible describirlos en relación con otros elementos similares. Se suelen describir apoyándose en los postulados característicos, que determinan las relaciones entre los entes geométricos fundamentales.

 

Recta:

En geometría euclidiana, la recta o línea recta, es el ente ideal que se extiende en una misma dirección, existe en una sola dimensión y contiene infinitos puntos; está compuesta de infinitos segmentos (el fragmento de línea más corto que une dos puntos). También se describe como la sucesión continua e indefinida de puntos en una sola dimensión, o sea, no posee principio ni fin.

 

Semirrecta:

Una semirecta es cada una de las dos partes en que queda dividida una recta por cualquiera de sus puntos. Es la parte de una recta conformada por todos los puntos que se ubican hacia un lado de un punto fijo de la recta. Una semirrecta tiene un primer punto, denominado origen y, por otra parte, se extiende hacia el infinito, como las rectas.

 

Segmento:

Un segmento, en geometría, es un fragmento de recta que está comprendido entre dos puntos.

Así, dados dos puntos A y B, se le llama segmento AB a la intersección de la semirrecta de origen A que contiene al punto B, y la semirrecta de origen B que contiene al punto A. Luego, los puntos A y B se denominan extremos del segmento, y los puntos de la recta a la que pertenece el segmento (recta sostén), serán interiores o exteriores al segmento según pertenezcan o no a este.

 

Curva:

En matemáticas, el concepto de curva (o línea curva) es una línea continua de una dimensión, que varía de dirección paulatinamente. Ejemplos sencillos de curvas cerradas son la elipse o la circunferencia, y de curvas abiertas la parábola, la hipérbola o la catenaria. La recta sería el caso límite de una curva de radio infinito.

 

Plano (geometría):

En geometría, un plano es el ente ideal que sólo posee dos dimensiones, y contiene infinitos puntos y rectas; es uno de los entes geométricos fundamentales junto con el punto y la recta.

 

Polígono:

Los polígonos cuyos lados no están en el mismo plano, se denominan polígonos alabeados.

Existe la posibilidad de configurar polígonos en más de dos dimensiones. Un polígono en tres dimensiones se denomina poliedro, en cuatro dimensiones se llama polícoro, y en n dimensiones se denomina politopo.

 

Triángulo:

Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran alineados). Los puntos de intersección de las rectas son los vértices y los segmentos de recta determinados son los lados del triángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo.

 

Cuadrilátero:

Un cuadrilátero es un polígono que tiene cuatro lados. Los cuadriláteros pueden tener distintas formas pero todos ellos tienen cuatro vértices y dos diagonales.

 

Sección cónica:

Se denomina sección cónica (o simplemente cónica) a la intersección de un cono circular recto de dos hojas con un plano que no pasa por su vértice. Se clasifican en tres tipos: elipse, parábola e hipérbola.

 

Elipse:

Una elipse es la curva simétrica cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado.

 

Circunferencia:

A la distancia entre cualquiera de sus puntos y el centro se le denomina radio. El segmento de recta formado por dos radios alineados se llama diámetro. Es la mayor distancia posible entre dos puntos que pertenezcan a la circunferencia. La longitud del diámetro es el doble de la longitud del radio. La circunferencia sólo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.

 

Parábola (matemática):

En matemática, la parábola (del griego παραβολή) es la sección cónica resultante de cortar un cono recto con un plano paralelo a su generatriz. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta (eje o directriz) y un punto fijo llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.

 

Hipérbola:

Una hipérbola (del griego ὑπερβολή) es una sección cónica, una curva abierta de dos ramas obtenida al cortar un cono recto por un plano oblicuo al eje de simetría con ángulo menor que el de la generatriz respecto del eje de revolución.

 

Cilindro:

Un cilindro, en geometría, es la superficie formada por los puntos situados a una distancia fija de una línea recta dada, el eje del cilindro. Como superficie de revolución, se obtiene mediante el giro de una recta alrededor de otra fija llamada eje de revolución.

El sólido encerrado por esta superficie y por dos planos perpendiculares al eje también se llamado cilindro

 

Cono (geometría):

En geometría, un cono recto es un sólido de revolución generado por el giro de un triángulo rectángulo alrededor de uno de sus catetos. Al círculo conformado por el otro cateto se denomina base y al punto donde confluyen las generatrices se llama vértice.

Superficie cónica se denomina a toda superficie reglada conformada por el conjunto de rectas que teniendo un punto común (el vértice), intersecan a una circunferencia no coplanaria.

 

Esfera:

En geometría, una esfera es un cuerpo geométrico limitado por una superficie curva cerrada cuyos puntos equidistan de otro interior llamado centro de la esfera.

La esfera, como sólido de revolución, se genera haciendo girar una superficie semicircular alrededor de su diámetro (Euclides, L. XI, def. 14).