Functional Semiconductor Nanowire Probe

EU FP7-PEOPLE-2010-IRSES Marie Curie Action "International Research Staff Exchange Scheme"
Duration: 48 months from 1 July 2011
Funding: €374,300

Project Summary

This project was concerned with the controlled growth III-V semiconductor nanowires (NWs) for integration in various device settings and primarily in scanning probe microscopy, exploiting the unique properties of these nanomaterials. For implementation, the project was divided in three workpackages spanning, Nanowire growth & Modelling,  SPM  Fabrication & Applications and Characterisation & Spectroscopy where clear milestones and deliverables were identified for each.  The key objectives of the project summarised below before the core findings are briefly highlighted.

•          Develop nanowire growth protocols to control their physical, optical and energy transport properties at the nanometre scale.

•          Develop theoretical models to provide fundamental insight into the growth mechanisms, characterisation data and to support device integration.

•          Provide clear evidence of a successful integration in devices.

•          Conduct a full characterisation of the nanowires and their growth parameters and that of the devices produced and their operation.  


Nanowire growth & Modelling

The potential to achieve controlled growth and the development of theoretical models were investigated. A large amount of growth schemes were carried out and relevant theoretical models and DFT calculation were developed to gain a better insight in the process and to inform on optimal growth conditions to achieve a better control.  The Vapor−Liquid−Solid nanowire (VLS) growth model now widely used in the community and the Vapor–liquid–solid hydride vapour phase epitaxy (HVPE) were proposed. The statistics of nucleation events in NW growing via the VLS mechanism in the mononuclear regime was investigated theoretically. A semi-analytical model was developed to describe the distributions of time intervals between the successive nucleation events and useful characteristics of nucleation statistics. Phase purity was attributed due to a lower surface energy of liquid Ga compare to that of Au-Ga alloys. HVPE nanowire growth only proceeds by introduction of precursors in the catalyst droplets from the vapour phase, promoting almost pure axial growth leading to nanowires with a constant cylinder shape over unusual length. This led to the synthesis of polytypism-free zincblende phase 20 μm long GaAs nanowires exhibiting record radii lower than 15 nm down to 5 nm. The influence of the group V element on the preferred crystal structure of Au-catalyzed III-V nanowires was studied to show that the nanowire elongation rate is limited by the group III transport, while the crystal structure depends on the effective group V to III imbalance. Current-voltage characteristics of (GaMn)As NWs were correlated to growth parameters and theoretical calculations. Theoretical studies of the InAs shell on GaAs NW formation were performed to introduce of the concept of a critical thickness of the external (wetting) layer. Various GaN NWs systems were grown and systematically characterised to describe the relevance of size distribution on the physical properties. Theoretical validation helped establish a scaling thermodynamic model for self-induced nanowires growth rate, leading to the development of a theoretical model of diffusion-induced nanowire growth and self-induced growth. To facilitate the applications of the SPM systems developed, DFT models were developed for various material systems.


SPM Fabrication & Applications

The Development of a SPM platform for electrical, optical and thermal properties of nanowires focused on the fabrication of scanning probe microscopy (SPM) tools by integration of nanowires and the creation of their applications platform. A nanofabrication method combining focused ion beam milling and conventional microfabrication techniques was developed to attach carbon nanotubes to SPM tips for thermal and topographical measurements. CNT was shown to exhibit a superior behaviour, leading to topographical and thermal resolution better than 20 and 30 nm, respectively. Thermal transport properties in graphene and high thermal conductivity interconnects materials were carried out. We also tested the use of the bespoke SPM in the liquid environment and conducted nanomechanical and nanothermal SPM measurements. A proprietary technique based on electrochemical sharpening was developed to provide rapid and multiple probes fabrication, higher control of the aspect ratio for the fabrication of ultra-sharp tungsten probes, essential to the manipulation of the nanowires and carbon nanotubes. A method for the formation of single GaAs semiconductor nanowhiskers and their assemblies on the tip of a tungsten needle by molecular-beam epitaxy was developed. Si cantilevers were modified by the direct growth of carbon nanowires to produce nanofork and nanoscalpel structures. Using the modified tips, nanolithography, nanosurgery of erythrocytes and manipulation of colloidal particles with enhanced resolution and precision were successfully demonstrated. We have also demonstrated that it is possible to fabricate electrochemical probes using focused ion beam (FIB) milling where conductive Pt and W tips were grown on the top of processed standard non-conductive SiN AFM probes.


Characterisation & Spectroscopy

We focused on the calibration of the SPM tools developed and the characterisation of the physical properties of nanowires, nanowire systems and associated low dimensional nanostructures. Topographical and nanoscale thermal imaging and electrical response measurements were utilised for SPM calibration. Theoretical models were developed to depict modified SPM tips by the integration of nanowires and their operation in various environments. Experimental confirmation data enabled us to extract the fundamental relationship linking nanoscale heat and electronic transport via the nanowire to nanomechanical forces. Finally, we have demonstrated that the SPM analytical platform developed was suitable biomedical applications requiring their operation in liquid environment. The characterisation of the nanowire systems span electronic transport measurements, high resolution microscopy structural analysis, optical properties of individual and various nanowire systems. For instance, (Ga,Mn)As nanowires were grown by molecular beam epitaxy using Mn as a catalyst on GaAs(001) substrates to highlight the effect of an arsenic flux on the growth rate, to determine their electrical characteristics (resistivity and the carrier mobility) and to develop a new model for the determination of the Young's modulus. The current generation in contacted GaAsP nanowire ensembles was used as a novel tool to electrically detect picosecond acoustic pulses. The electrical response is sensitive to the elastic properties of the device and has a frequency cutoff at about 10 GHz. The photovoltaic properties of GaAsP nanowires and core-shell wires contacted using a transparent top contact electrode were investigated to extract electrical and electro-optical properties.  GaN and ZnO nanowires photodetectors were demonstrated using CVD-grown few-layered graphene as a transparent electrode. A theoretical model was developed to describe the photodetector operation. THz generation under excitation by ultrashort optical pulses in ordered arrays of GaAs nanowires was reported, where efficiency of THz radiation generation increases due to the resonant leaky mode excitation in nanowires. Finally, by correlating their concentration, viscosity, electrical properties to their computational response, it was demonstrated that conductive paths in random networks of nanomaterials can be evolved to emulate various functionalities from the same device, i.e. perform computation.


In summary, the objectives of the project were delivered. We have made significant contribution to nanowire research and technologies. A comprehensive training programme of early stage researchers was conducted and led to numerous publications, with more than 80 peer-reviewed papers published. Three patents and a spin-out company were reported. Likewise, results from this research contributed to developing new international collaborations and to securing further research funding from national agencies and the European Commission.

Participating Institutions

Durham University, UK - Dr Dagou Zeze (Programme Coordinator)

University of Lancaster, UK - Dr Oleg Kolosov

St. Petersburg Academic University RAS, Russia - Professor Vladimir Dubrovskii

Ioffe Institute, St. Petersburg, Russia - Professor George Cirlin

Aalto-Korkeakoulusaatio, Finland -Professor Harri Lipsanen

Univerzita Karlova V Praze, Czech Republic - Professor Vladimir Matolin

Université Paris-Sud XI, France - Dr Maria Tchernycheva

Université Blaise Pascal Clermont-Ferrand II, France - Dr Christine Robert-Goumet

Institute of Physics of National Academy of Sciences, Kiev, Ukraine - Professor Ivan N. Yavovkin

Peer-reviewed Publications

(1)       I.S. Mukhin, I.V. Fadeev, M.V. Zhukov, V.G. Dubrovskii, A.O. Golubok; “Framed carbon nanostructures: Synthesis and applications in functional SPM tips” Ultramicroscopy 148, 151 (2015). doi:10.1016/j.ultramic.2014.10.008

(2)       V.G. Dubrovskii Y.Y. Hervieu; “Diffusion-induced growth of nanowires: Generalized boundary conditions and self-consistent kinetic equation” J. Crystal Growth 401, 51 (2014). doi:10.1016/j.jcrysgro.2014.01.015

(3)       A A Koryakin, N V Sibirev, D A Zeze and V G Dubrovskii Modeling of axial heterostructure formation in ternary III-V nanowires, Journal of Physics: Conference Series 643, 012007 (2015); doi:10.1088/1742-6596/643/1/012007.

(4)       D. Volpati, M. K. Massey, D. W. Johnson, A. Kotsialos, F. Qaiser, C. Pearson, K. S. Coleman, G. Tiburzi, D. A. Zeze, and M. C. Petty; Exploring the alignment of carbon nanotubes dispersed in a liquid crystal matrix using coplanar electrodes; Journal of Applied Physics 117, 125303 (2015); doi: 10.1063/1.4916080.

(5)       M. K. Massey, A. Kotsialos, F. Qaiser, D. A. Zeze, C. Pearson, D. Volpati, L. Bowen, and M. C. Petty; Computing with carbon nanotubes: Optimization of threshold logic gates using disordered nanotube/polymer composites; Journal of Applied Physics 117, 134903 (2015); doi: 10.1063/1.4915343.

(6)       A Kotsialos, M K Massey, F Qaiser, D A Zeze C Pearson, MC Petty; Logic gate and circuit training on randomly dispersed carbon nanotubes; Int. Journal of Unconventional Computing, 473-497 (2014).

(7)       M. Timofeeva, A. Bolshakov, P. D. Tovee, D. A. Zeze, V. G. Dubrovskii, O. V. Kolosov,  Scanning thermal microscopy with heat conductive nanowire probes, Ultramicroscopy 162, 42–51 (2016). doi:10.1016/j.ultramic.2015.12.006

(8)       N.V. Petrova, I.N. Yakovkin, D.A. Zeze; Metallization and stiffness of the Li-intercalated MoS2 bilayer; Applied Surface Science 353, 333 (2015).  doi:10.1016/j.apsusc.2015.06.123

(9)       Alexander V. Senichev, Vadim G. Talalaev, Igor V. Shtrom, Horst Blumtritt, George E. Cirlin, Jörg Schilling, Christoph Lienau, Peter Werner.”Nanospectroscopic Imaging of Twinning Superlattices in an Individual GaAs-AlGaAs Core−Shell Nanowire”, ACS Photonics, 2014, 1, 1099 (2014). DOI: 10.1021/ph5002022

(10)    V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, J. P. Kakko, T. Huhtio, G.E. Cirlin, and H. Lipsanen “Generation of terahertz radiation in ordered arrays of GaAs nanowires”, Appl. Phys. Lett. 106, 252104 (2015).

(11)    R. V. Grigor’ev, I. V. Shtrom , N. R. Grigor’eva, B. V. Novikov, I. P. Soshnikov, Yu. B. Samsonenko, A. I. Khrebtov, A. D. Buravleuv, G. E. Cirlin. “Photoelectric properties of an array of axial GaAs/AlGaAs nanowires”, Technical Physics Letters, 41, 443 (2015). DOI: 10.1134/S1063785015050077

(12)    Y. Andre, A. Trassoudaine, G.Avit, K. Lekhal, M.R. Ramdani, C. Leroux, G. Monier, C. Varenne, P. Hoggan, D. Castelluci, C. Bougerol, F. Réveret, J. Leymarie, E. Petit, V.G. Dubrovskii and E. Gil; Hydride VPE: the unexpected process for fast growth of GaAs and GaN nanowires with record aspect ratio and polytypism-free crystalline structure , Proc. SPIE 8923, Micro/Nano Materials, Devices, and Systems, 89230O (2013) doi: 10.1117/12.2035485

(13)    Mazzocco, R., Robinson, B., Rabot, C., Delamoreanu, A., Zenasni, A., Dickinson, J., Boxall, C. & Kolosov, O., Surface and interfacial interactions of multilayer graphitic structures with local environment, Thin Solid Films. 585, p. 31 (2015).  doi:10.1016/j.tsf.2015.04.016

(14)    Robinson, B., Giusca, C., Gonzalez, Y., Kay, N., Kazakova, O. & Kolosov, O., Structural, optical and electrostatic properties of single and fewlayers MoS2: effect of substrate. 2D Materials. 2, 015005 (2015).

(15)    Manuel Rivas, Varun Vyas, Aliya Carter, James Veronick, Yusuf Khan, Oleg V. Kolosov, Ronald G Polcawich, Bryan D. Huey, Nanoscale Mapping of In-Situ Actuating Micro Electro Mechanical Systems with AFM, J Mat. Res., J. Mater. Res. 30, 442 (2015).

(16)    Anyebe, E., Sanchez, A., Hindmarsh, S., Chen, X., Shao, J., Rajpalke, M. K., Veal, T. D., Robinson, B., Kolosov, O., Anderson, F., Sandaram, R., Wang, Z. M., Falko, V. & Zhuang, Q., Realization of vertically aligned, ultra-high aspect ratio InAsSb nanowires on graphite, Nano Letters. 15, 4348 (2015).

(17)    Bosse, J., Timofeeva, M., Tovee, P., Robinson, B., Huey, B. & Kolosov, O., Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopy,  Journal of Applied Physics. 116, 134904 (2014).

(18)    Robinson, B. & Kolosov, O., Probing nanoscale graphene-liquid interfacial interactions via Ultrasonic Force Spectroscopy, Nanoscale. 6, 18, p. 10806 (2014).

(19)    Agnès Messanvi, Hezhi Zhang, Vladimir Neplokh, François Henri Julien, Fabien Bayle, Martin Foldyna, Catherine Bougerol, Eric Gautier, Andrey Babichev, Christophe Durand, Joël Eymery, Maria Tchernycheva, Investigation of photovoltaic properties of single core-shell GaN/InGaN wires, ACS Appl. Mater. Interfaces 7, 21898−21906 (2015). DOI: 10.1021/acsami.5b06473

(20)    Tchernycheva M, Neplokh V, Zhang H, Lavenus P, Rigutti L, Bayle F, Julien FH, Babichev A, Jacopin G, Largeau L, Ciechonski R, Vescovi G, Kryliouk O, Core-shell InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current microscopy and cathodoluminescence mapping, Nanoscale 7, 11692 – 11701 (2015). DOI: 10.1039/C5NR00623F

(21)    Yu. Egorov, A. V. Babichev, L. Ya. Karachinsky, I. I. Novikov, E. V. Nikitina, M. Tchernycheva, A. N. Sofronov, D. A. Firsov, L. E. Vorobjev, N. A. Pikhtin, I. S. Tarasov, Lasing of multiperiod quantum-cascade lasers in the spectral range of (5.6–5.8)-μm under current pumping,  SEMICONDUCTORS 49(11):1527-1530 (2015). DOI: 10.1134/S106378261511007X.

(22)    L. Rigutti et M. Tchernycheva « GaN nanowire-based UV photodetectors », in Wide Band Gap Semiconductor Nanowires for Optical Devices: The Particular Case of GaN and ZnO, edited by V. Consonni et G. Feuillet, p. 179, 22 pages, Wiley-ISTE (2014). Book chapter

(23)    S. K. Young, A. D. Bouravleuv, G. E. Cirlin, V. Dhaka, H. Lipsanen, M. Tchernycheva, A. V. Scherbakov, A. V. Platonov, A. V. Akimov, A. J. Kent. “Electrical detection of picosecond acoustic pulses in vertical transport devices with nanowires”, Appl. Phys. Lett. 104, 062102 (2014).

(24)    V. G. Dubrovskii; Influence of the group V element on the chemical potential and crystal structure of Aucatalyzed III-V nanowires; Appl. Phys. Lett. 104, 053110 (2014).

(25)    N.V. Sibirev, M.V. Nazarenko, D.A. Zeze, V.G. Dubrovskii; Modeling the nucleation statistics in vapor–liquid–solid nanowires; J. Crystal Growth 401, 51 (2014). DOI: 10.1016/j.jcrysgro.2013.12.064

(26)    I.N. Yakovkin, N.V. Petrova, Hydrogen-induced metallicity and strengthening of MoS2, Chem. Phys. 434, 20 (2014). DOI: 10.1142/S0218625X14500395

(27)    I.N. Yakovkin, Interlayer interaction and screening in MoS2, Surf. Rev. Lett. 21, 1450039 (2014). DOI: 10.1142/S0218625X14500395

(28)    E. Gil, V. G. Dubrovskii, G. Avit, Y. André, C. Leroux,  K.r Lekhal, J. Grecenkov, A. Trassoudaine, D. Castelluci, G. Monier, R. M. Ramdani, C. Robert-Goumet, L. Bideux, J. C. Harmand, F. Glas; Record pure zincblende phase in GaAs nanowires down to 5 nm in radius; Nano Lett. 14, 3938 (2014). DOI: 10.1021/nl501239h

(29)    Y. André, K. Lekhal, P. Hoggan, G. Avit, F. Cadiz, A. Rowe, D. Paget, E. Petit, C. Leroux, A. Trassoudaine, R.M. Ramdani, G. Monier, D. Colas, R. Ajib, D. Castelluci, E. Gil; Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: Ab initio simulations supporting center nucleation;  J. Chem. Phys. 140, 194706 (2014).

(30)    X. Liu, V.G.Dubrovskii, X. Ren; The nucleation site selection of vapour-liquid-solid nanowires; J. Phys.: Condens. Matter 25, 7 (2013). doi:10.1088/0953-8984/25/21/215302

(31)    A. D. Bouravleuv, N. V. Sibirev, D. V. Beznasyuk, N. Lebedeva, S. Novikov, H.Lipsanen, and G. E. Cirlin “New Method of Determining the Young’s Modulus of (Ga,Mn)As Nanowhiskers with a Scanning Electron Microscope;  Phys. Solid State 55, 2229 (2013). DOI: 10.1134/S1063783413110061

(32)    A. D. Bouravleuv, N. V. Sibirev, E. P. Gilstein, P. N. Brunkov, I. S. Mukhin, M. Tchernycheva, A. I. Khrebtov, Yu. B. Samsonenko, and G. E. Cirlin; Study of the Electrical Properties of Individual (Ga,Mn)As Nanowires; Semiconductors 48, 344 (2014). DOI: 10.1134/S1063782614030075

(33)    V. G. Dubrovskii, N. V. Sibirev; Size distributions, scaling properties, and Bartelt-Evans singularities in irreversible growth with size-dependent capture coefficients; Phys Rev B 89, 054305 (2014). DOI: 10.1103/PhysRevB.89.054305

(34)    Y. André, A. Trassoudaine, G. Avit, K. Lekhal, M.R. Ramdani, Ch. Leroux, G. Monier, C. Varenne, P. Hoggan, D. Castelluci, C. Bougerol, F. Reveret, J. Leymarie, E. Petit, V.G. Dubrovskii, E. Gil ; Hydride VPE: the unexpected process for fast growth of GaAs and GaN nanowires with record aspect ratio and polytypism-free crystalline structure; SPIE 8923-23, Vol. 1 (2014). doi: 10.1117/12.2035485

(35)    M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand; Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors”; Nano Lett. 14, 3515 (2014). DOI: 10.1021/nl501124s

(36)    A. V. Babichev, V E Gasumyants, A Yu Egorov, S Vitusevich and M Tchernycheva; Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications; Nanotechnology 25, 335707 (2014). doi:10.1088/0957-4484/25/33/335707

(37)    M. Tchernycheva, P. Lavenus, H. Zhang, A. V. Babichev, G. Jacopin, M. Shahmohammadi, F. H. Julien, R. Ciechonski, G. Vescovi, and O. Kryliouk; InGaN/GaN Core−Shell Single Nanowire Light Emitting Diodes with Graphene-Based PContact; Nano Lett. 14, 2456 (2014). DOI: 10.1021/nl5001295

(38)    Bosse, J., Grishin, I., Huey, B., & Kolosov, O. (2014). Nanomechanical morphology of amorphous, transition, and crystalline domains in phase change memory thin films, Appl. Surf. Sci. 314, 151 (2014). DOI: 10.1016/j.apsusc.2014.06.135

(39)    Trabelsi, ABG, Kusmartsev, FV, Robinson, B, Ouerghi, A, Kusmartseva, OE, Kolosov, O, Mazzocco, R, Gaifullin, MB & Oueslati, M; Charged nano-domes and bubbles in epitaxial graphene', Nanotechnology  25, 165704 (2014). DOI: 10.1088/0957-4484/25/16/165704

(40)    James Bosse, Maria Timofeeva, Peter Tovee, Benjamin Robinson, Bryan Huey, and Oleg Kolosov, ‘Nanothermal Characterization of Amorphous and Crystalline Phases in Chalcogenide Thin Films with Scanning Thermal Microscopy’ J. Appl. Phys. Volume 116, Issue 12, 134904 (2014).

(41)    D. Tovee, P., Pumarol, M., C. Rosamond, M., Jones, R., C. Petty, M., A. Zeze, D., and V. Kolosov, O.;  Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes; Phys. Chem. Chem. Phys. 16, 1174. (2014). DOI: 10.1039/c3cp53047g

(42)    Tinker-Mill, C, Mayes, J, Allsop, D & Kolosov, O; Ultrasonic force microscopy for nanomechanical characterization of early and late-stage amyloid-β peptide aggregation; Scientific Reports 4, 4004 (2014). DOI:  10.1038/srep04004

(43)    D. Tovee, P & V. Kolosov, O; Nanoscale resolution immersion scanning thermal microscopy; Nanotechnology 24, 465706 (2013).  10.1088/0957-4484/24/46/465706

(44)    Anyebe, E, Zhuang, Q, Sanchez, AM, Lawson, S, Robson, A, Ponomarenko, LA, Zhukov, A & Kolosov, O, Self-catalysed growth of InAs nanowires on bare Si substrates by droplet epitaxy; Physica Status Solidi: Rapid Research Lett. 8, 658 (2014). DOI: 10.1002/pssr.201409106

(45)    I. P. Soshnikov,  V. A. Petrov, Y. Y. Proskuryakov, D. A. Kudryashov, A. V. Nashchekin, G. E. Cirlin,    R. Treharne, K. Durose;  Formation of structures with noncatalytic CdTe nanowires; Semiconductors 47, 875 (2013). DOI: 10.1134/S1063782613070221

(46)    N. V. Sibirev, A. D. Bouravleuv, Yu. M. Trushkov, D. V. Beznasyuk, Yu. B. Samsonenko, G. E. Cirlin; Effect of an Arsenic Flux on the Molecular Beam Epitaxy of Self Catalytic (Ga,Mn)As Nanowire Crystals; Semiconductors 47, 1416 (2013). DOI: 10.1134/S1063782613100266

(47)    I. Khrebtov, V. G. Talalaev, P. Werner, V. V. Danilov, M. V. Artemyev, B. V. Novikov, I. V. Shtrom, A. S. Panfutova, G. E. Cirlin; Composite System Based on CdSe/ZnS Quantum Dots and GaAs Nanowires; Semiconductors 47, 1346 (2013). DOI: 10.1134/S106378261310014X

(48)    A. D. Bolshakov, V. G. Dubrovskii, X. Yan, X. Zhang, X. Ren; Modeling InAs Quantum Dot Formation on the Side Surface of GaAs Nanowires; Tech. Phys. Lett. 39, 1047 (2013). DOI: 10.1134/S1063785013120043

(49)    A.V. Babichev, H. Zhang, P. Lavenus, F. H. Julien, A. Yu. Egorov, Y. T. Lin, L. W. Tu and M. Tchernycheva; GaN nanowire ultraviolet photodetector with a graphene transparent contact; Appl. Phys. Lett. 103, 201103 (2013).

(50)    H. Zhang, A. V. Babichev, G. Jacopin, P. Lavenus, F. H. Julien, A. Yu. Egorov, J. Zhang, T. Pauporté, and M. Tchernycheva; Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact; J. Appl. Phys. 114, 234505 (2013).

(51)    A. D. Bouravleuv, G. O. Abdrashitov, and G. E. Cirlin. Molecular Beam Epitaxy of (Ga,Mn)As Crystal Nanowires on Surface GaAs(100). Tech. Phys. Lett., 2012, Vol. 38, No. 9, pp. 816–818. DOI: 10.1134/S1063785012090040

(52)    I. P. Soshnikov, V. A. Petrov, G. E. Cirlin, Yu. B. Samsonenkoa, A. D. Bouravlev, Yu. M. Zadiranov, N. D. Il’inskaya, I. Troshkov. Growth Specifics of GaAs Nanowires in Mesa. Phys. Sol. State, 2013, Vol. 55, No. 4, pp. 702–706. DOI: 10.1134/S106378341304029X

(53)    V. G. Dubrovskii. Self-regulated pulsed nucleation in catalyzed nanowire growth. Phys. Rev. B. 87, 195426 (2013). DOI:

(54)    Xiaolong Liu, V.G. Dubrovskii, and Xiaomin Ren. The nucleation site selection of vapor–liquid–solid nanowires. J. Phys.: Condens. Matter 25, 215302 (2013). DOI:10.1088/0953-8984/25/21/215302

(55)    R.J. Yee, S.J. Gibson, V.G. Dubrovskii, and R.R. LaPierre. Effects of Be doping on InP nanowire growth mechanisms. Appl. Phys. Lett. 101, 263106 (2012). DOI: 10.1063/1.4773206

(56)    Alexei Bouravleuv, George Cirlin, Victor Sapega, Peter Werner, Alexander Savin, Harri Lipsanen. Ferromagnetic (Ga,Mn)As nanowires grown by Mn-assisted molecular beam epitaxy. J. Appl. Phys. 113, 144303 (2013). DOI:

(57)    Vladimir G. Dubrovskii, Alexey D. Bolshakov, Benjamin L. Williams, and Ken Durose. Growth modeling of CdTe nanowires”. Nanotechnology 23, 485607 (2012). DOI:10.1088/0957-4484/23/48/485607

(58)    Maxim V. Nazarenko, Nickolay V. Sibirev, Kar Wei Ng, Fan Ren, Wai Son Ko, Vladimir G. Dubrovskii, and Connie Chang-Hasnain. Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars. J. Appl. Phys. 113, 104311 (2013).

(59)    I.N. Yakovkin, N.V. Petrova. Electronic structure of SnO and SnO2 layers on Rh(111). Surf. Sci. 613 (2013) 48–53. DOI: 10.1016/j.susc.2013.03.003

(60)    N.V. Petrova, I.N. Yakovkin. DFT calculations of the electronic structure of SnOx layers on Pd(110). Eur. Phys. J. B 86: 303 (2013) 5 DOI: 10.1140/epjb/e2013-40105-5

(61)    N.V. Petrova, I.N. Yakovkin. DFT calculations of phonons in GaAs with zinc blende and wurtzite structures. Physica Status Solidi B, 1–4 (2013) / DOI 10.1002/pssb.201349256

(62)    AD Bouravleuv, DV Beznasyuk, EP Gilstein, M Tchernycheva, A De Luna Bugallo, L Rigutti, L Yu, Yu Proskuryakov, IV Shtrom, MA Timofeeva, Yu B Samsonenko, AI Khrebtov, G Cirlin . Photovoltaic properties of GaAs: Be nanowire arrays. Semiconductors 47 (6), 808-811 (2013). DOI: 10.1134/S1063782613060079

(63)    M. Tchernycheva, L. Rigutti, G. Jacopin, A. de Luna Bugallo, P. Lavenus, F. H. Julien, M. Timofeeva, A. D. Bouravleuv, G. E. Cirlin, V. Dhaka, H. Lipsanen, L. Largeau. Photovoltaic properties of GaAsP core–shell nanowires on Si (001) substrate. Nanotechnology 23 (26), 265402 (2012). DOI:10.1088/0957-4484/23/26/265402

(64)    R. Stone, M. Rosamond, K. Coleman, M. Petty, O. Kolosov, L. Bowen, V. Dubrovskii, and D. Zeze. Tungstate sharpening: A versatile method for extending the profile of ultra sharp tungsten probes. Rev. Sci. Instrum. 84, 035107 (2013).

(65)    P. Tovee, M. Pumarol, D. Zeze, K. Kjoller and O. Kolosov; Nanoscale spatial resolution probes for scanning thermal microscopy of solid state materials, J. Appl. Phys. 112, 114317 (2012).

(66)    M. Pumarol, MC Rosamond, PD Tovee, MC Petty, DA Zeze, VI Falko and OV Kolosov. “Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures”. Nano Lett. 12 2906 (2012). DOI: 10.1021/nl3004946

(67)    O.V. Kolosov, M.E. Pumarol, P. Tovee, M. C. Rosamond, M. C. Petty, D. A. Zeze, V. Falko. “Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures”.  Proc. NSTI-Nanotech 2012,, ISBN 978-1-4665-6274-5 Vol. 1, 2012. p.206-209.

(68)    Robinson B, Kay N, Kolosov O.  Nanoscale interfacial interactions of graphene with polar and non-polar liquids. Langmuir, 29 (25), pp 7735–7742 (2013). DOI: 10.1021/la400955c

(69)    Robson, A. , Grishin, I. , Young, R. , Sanchez, A. M. , Kolosov, O. & Hayne, M. High-accuracy analysis of nanoscale semiconductor layers using beam-exit Ar-ion polishing and scanning probe microscopy. ACS Applied Materials and Interfaces, 5 (8), pp 3241–3245 (2013). DOI: 10.1021/am400270w

(70)    Acoustically Excited Probe Microscopy, in book “Advances in Acoustic Microscopy and High Resolution Ultrasonic Imaging: From Principles to New Applications” ed. Roman Maev, by Wiley VCH, 2013. ISBN 978-3-527-41056-9 - Wiley-VCH, Berlin, Edition March 20132013. XII, 388 Pages, Hardcover

(71)    A. Briggs and O. Kolosov, Ultrasonic Force and Related Microscopies, chapter in book “Scanning Probe Acoustic Techniques”, series of Nanoscience and Technology, Springer, 2013. NanoScience and Technology pp 261-292, 04 October 2012; 10.1007/978-3-642-27494-7_9 (

(72)    G.E. Cirlin, V. G. Dubrovskii, Y.B. Samsonenko, A.D. Bouravleuv, K. Durose, Y.Y. Proskuryakov, B. MendesL. Bowen, M.A. Kaliteevski, R.A. Abram, and D. Zeze; Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy; Physical Review B 82, 035302 (2010). DOI: 10.1103/PhysRevB.82.035302

(73)    V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand, and P. Werner; New Mode of Vapor-Liquid-Solid Nanowire Growth; Nano Letters 2011, Vol 11, pp1247–1253. DOI: 10.1021/nl104238d

(74)    X. Zhang, V. G. Dubrovskii, N.V. Sibirev, and X. Ren; Analytical Study of Elastic Relaxation and Plastic Deformation in Nanostructures on Lattice Mismatched Substrates; Crystal Growth & Design 2011, 11, 5441–5448. DOI: 10.1021/cg201029x

(75)    V. G. Dubrovskii, T. Xu, Y. Lambert, J.-P. Nys, B. Grandidier, D. Stievenard, W. Chen, and P. Pareige; Narrowing the Length Distribution of Ge Nanowires; Physical Review Letters Vol 108, 105501 (2012). DOI: 10.1103/PhysRevLett.108.105501

(76)    V. G. Dubrovskii, V.  Consonni, A. Trampert, L. Geelhaar, and H. Riechert; Scaling thermodynamic model for the self-induced nucleation of GaN nanowires;  Physical Review B  85, 165317 (2012). DOI: 10.1103/PhysRevB.85.165317

(77)    V. Consonni, V. G. Dubrovskii, A. Trampert, L. Geelhaar, and H. Riechert; Quantitative description for the growth rate of self-induced GaN nanowires; Physical Review B  85, 155313 (2012). DOI: 10.1103/PhysRevB.85.155313

(78)    V. G. Dubrovskii, V. Consonni, L. Geelhaar, A. Trampert, and H. Riechert;  Scaling growth kinetics of self-induced GaN nanowires; Applied Physics Letters 100, 153101 (2012).

(79)     N.V. Sibirev, M. Tchernycheva, M.A. Timofeeva, J-C. Harmand, G. E.  Cirlin, and V.G. Dubrovskii; Influence of shadow effect on the growth and shape of InAs nanowires; Journal of Applied Physics 111, 104317 (2012). DOI: 10.1063/1.4718434

(80)    W. Chen, V.G. Dubrovskii, X. Liu,  T. Xu, R. Larde´ , J. P. Nys, B. Grandidier, D. S. Venard, Gilles Patriarche, and Philippe Pareige; Boron distribution in the core of Si nanowire  grown by chemical vapor deposition; Journal of Applied Physics 111, 094909 (2012).

(81)    O. Golubok, Yu. B. Samsonenko, I. S. Mukhin, A. D. Buravlev, and G. E. Cirlin; Growth of Single GaAs Nanowhiskers on the Tip of a Tungsten Needle and Their Electrical Properties;  Semiconductors, 2011, Vol. 45, No. 8, pp. 1049–1052. DOI: 10.1134/S1063782611080082

(82)    MC Rosamond, AJ Gallant, MC Petty, O Kolosov, and DA Zeze. “A versatile nanopatterning technique based on controlled undercutting and liftoff”. Advanced Materials 23 (43), 5039-5044 (2011). DOI: 10.1002/adma.201102708

(83)    M Pumarol, MC Rosamond, PD Tovee, MC Petty, DA Zeze, VI Falko and OV Kolosov. “Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures”. Nano Letters 12 2906–2911 (2012). DOI: 10.1021/nl3004946

(84)    I.N. Yakovkin; Band structure of Au layers on the Ru(0001) and graphene/Ru(0001) surfaces; The European Physical Journal B; (2012) 85: 61. DOI: 10.1140/epjb/e2012-20854-3