Ejercicio

 Los pasos de la resolución son:

  • Dividir la ecuación inicial por el coeficiente  a (a ≠ 0). Se obtiene:
x^3 + b'x^2 + c'x + d' = 0 \, con b' = \frac {b} {a} \,, c' = \frac {c} {a} \,, d' = \frac {d} {a} \,.
  • Proceder al cambio de incógnita z = x + \frac {b'} {3} \,, para suprimir el término cuadrado. En efecto, al desarrollar\left ( z - \frac {b'} {3} \right )^3 \,con la identidad precedente, vemos aparecer el término -b'z^2 \,, compensado exactamente por b'z^2 \, que aparece en b' \left ( z - \frac {b'} {3} \right )^2 \,. Se obtiene:
z^3 + pz + q = 0 \,, con p y q números del cuerpo que tienen las siguientes expresiones
p = c'-\frac{b'^2}{3} \,
q = \frac{2b'^3}{27} - \frac{b'c'}{3} + d' \,.
  • Y ahora, la astucia genial: escribir z = u + v \,. Así, la ecuación precedente da (u + v)^3 + p(u + v) + q = 0 \,.
Desarrollando: u^3 + 3u^2v + 3uv^2 + v^3 + pu + pv + q = 0 \,.
Reagrupando: (u^3 + v^3 + q) + (3uv^2 + 3u^2v + pu + pv) = 0 \,.
Factorizando: (u^3 + v^3 + q) + (u + v)(3uv + p) = 0 \,.
Como se ha introducido una variable adicional (u y v en vez de z), es posible imponerse una condición adicional. Concretamente:
3uv + p = 0 \,, que implica u^3 + v^3 + q = 0 \,.
  • Pongamos U = u^3 \, y V = v^3 \,. Entonces tenemos U + V = - q \, y UV = -\frac {p^3} {27} \, porque UV = (uv)^3 = (-\frac {p} {3})^3 \,. Por lo tanto U y V son las raíces de la ecuación auxiliar X^2 + qX - \frac {p^3} {27}=0\,, que se sabe resolver.

Luego u\, y v\, son raíces cúbicas de U\, y V\, que verifica n ( uv = -\frac {p} {3} \,), z = u + v \, y finalmente x = z - \frac {b'} {3} \,.

En el cuerpo \mathbb{C}, si u_0\, y v_0\, son estas raíces cúbicas, entonces las otras son \omega u_0\, y \omega^2u_0\,, y por supuesto \omega v_0\, y \omega^2v_0\,, con \omega = e^{\frac {2i \pi} {3}}\,, una raíz cúbica de la unidad.

Como el producto uv está fijado \left( uv = -\frac{p}{3} \right)\,, las parejas (u, v)\, posibles son (u_0, v_0)\,, (\omega u_0, \omega^2v_0)\, y (\omega^2u_0, \omega v_0)\,.

Las otras raíces de la ecuación de tercer grado son por lo tanto \omega u_0 + \omega^2v_0 - \frac {b'} {3} \, y \omega^2u_0 + \omega v_0 - \frac {b'} {3} \,.



SelectionFile type iconFile nameDescriptionSizeRevisionTimeUser
Comments