FISICA II‎ > ‎

1.2.4 cambio de fase

1.2.4 CAMBIO DE FASE

CAMBIOS DE FASE

Fases son los estados de la materia que pueden existir en equilibrio y en contacto térmicos simultáneamente. Los cambios de fase ocurren cuando algunas de las variables utilizadas en la descripción macroscópica (P,V,T) cambian bajo ciertas condiciones de equilibrio; ya sea por agentes externos o internos.

La descripción del fenómeno desde el punto de vista termodinámico lleva a utilizar la temperatura y presión como variables; los cuales permanecen constantes durante la transición. La entropía y el volumen son variables durante el proceso. Además, debido a que se realizan bajo condiciones de equilibrio termodinámico, los cambios de fase son reversibles.

Las isotermas en los diagramas P – V son horizontales durante las transiciones de fase. Entonces, es posible describir completamente la transición conociendo el estado final y el estado inicial. Es independiente de los estados intermedios, se calculan los potenciales químicos y se encuentran las variables involucradas en la transición. Entre los cambios de fase más conocidos se encuentran: la fusión y la sublimación. Entre los cambios de fase menos conocidos se encuentra el pasar de un arreglo cristalino a otro. Como ejemplo de lo anotado, el grafito se convierte en diamante.  

Un punto ordinario de una transición de fase en un diagrama de estado no es únicamente una singularidad matemática de las cantidades termodinámicas de una sustancia. Para cada fase existen desigualdades que no son violadas en ese punto. En el punto de la transición los potenciales químicos son iguales en ambas fases. El punto crítico es un concepto introducido por D.I. Mendeleev en 1860. Indica la región del plano PT donde la sustancia se vuelve homogénea. Donde existe un punto crítico una transición contínua puede efectuarse entre dos estados de la sustancia sin separar las dos fases.
 

TIPOS DE CAMBIOS DE ESTADO

Fusión y solidificación

Cuando se le comunica calor a un sólido cristalino, su temperatura aumenta progresivamente y al alcanzar un determinado valor se produce la transición o cambio de fase del estado sólido al líquido que denominamos fusión. Si las condiciones de presión exterior se mantienen constantes, el cambio de fase se verifica a una temperatura fija o punto de transición entre ambos estados, que se mantiene constante hasta que el sólido se ha fundido totalmente.

El calor que debe suministrarse a la unidad de masa de un sólido para convertirlo en líquido a la temperatura de fusión se denomina calor de fusión lf. En el agua lf vale 80 cal/g o su equivalente en unidades S.l.: 3,34 · 105 J/kg.

A nivel molecular la fusión se produce como consecuencia del derrumbamiento de la estructura cristalina. El incremento de temperatura da lugar a un aumento en la amplitud de las vibraciones de las partículas en la red, que termina por romper los enlaces y producir la fusión. Una vez que se alcanza la energía de vibración correspondiente a la temperatura de fusión, el calor recibido se emplea en romper nuevos enlaces, de ahí que se mantenga constante la temperatura durante el proceso.

La solidificación es la transición de líquido a sólido que se produce de forma inversa a la fusión, con cesión de calor. Cualquiera que sea la sustancia considerada el punto o temperatura de transición entre dos estados o fases de la materia es el mismo independientemente del sentido de la transformación. La disminución progresiva de la temperatura del líquido hace que en las proximidades del punto de solidificación las fuerzas de enlace vayan imponiendo progresivamente su orden característico.
                
 

Vaporización y condensación

Constituyen dos procesos inversos de cambio de estado. La vaporización es el paso de una sustancia de la fase líquida a la fase de vapor o fase gaseosa. La condensación es la transición de sentido contrario. Cuando la vaporización se efectúa en el aire recibe el nombre de evaporación. La evaporación afecta principalmente a las moléculas de la superficie del líquido.

Cada molécula de la superficie está rodeada por un menor número de sus compañeras; ello hace que puedan vencer con más facilidad las fuerzas atractivas del resto del líquido e incorporarse al aire como vapor. De ahí que cuanto mayor sea la superficie libre del líquido tanto más rápida será su evaporación.

El aumento de temperatura activa este proceso. Para cada valor de la presión exterior existe una temperatura para la cual la vaporización se vuelve violenta, afectando a todo el líquido y no sólo a su superficie. Esta forma tumultuoso de vaporización se denomina ebullición. El punto de ebullición de un líquido depende de las condiciones de presión exterior, siendo tanto más elevado cuanto mayor sea ésta.

Todo proceso de vaporización implica la absorción de calor por parte del líquido respecto del entorno. La cantidad de calor necesaria para transformar la unidad de masa de un líquido en vapor, a la temperatura de ebullición, se denomina calor de vaporización lv. En el agua lv vale 540 cal/g o, en unidades S.l.: 22,57 · 105 J/kg.

La condensación como transición de vapor a líquido se lleva a efecto invirtiendo las condiciones que favorecen la vaporización. Así, mientras que la disminución de la presión exterior facilita la vaporización, la compresión del vapor formado facilita la condensación; el aumento de temperatura de un líquido provoca su vaporización e, inversamente, el enfriamiento del vapor favorece su condensación.

En términos moleculares, tanto el aumento de presión como la disminución de la temperatura del vapor reducen la distancia media de las moléculas y hacen posible su unión.

Sublimación

Aunque es un fenómeno poco frecuente a la temperatura y presión ordinarias, algunas sustancias como el yodo o el alcanfor pueden transformase directamente de sólido a vapor sin necesidad de pasar por la fase intermedia de líquido. A tal fenómeno se le denomina sublimación.

La transición o cambio de estado de sentido inverso se denomina de igual manera, por ello a veces se distinguen ambas llamando a la primera sublimación progresiva y a la segunda sublimación regresiva.

En principio, cualquier sustancia pura puede sublimarse, pero debido a las condiciones de bajas presiones y temperaturas a las que es posible esta transición, el fenómeno sólo es reproducible, para la mayor parte de las sustancias, en el laboratorio.

Al igual que la fusión y la vaporización, también la sublimación (progresiva) absorbe una determinada cantidad de calor. Se denomina calor de sublimación ls a la cantidad de calor necesaria para sublimar la unidad de masa de una sustancia.
 
 
Teoría cinética molecular

Los dos parámetros de los que depende que una sustancia o mezcla se encuentre en un estado o en otro son: temperatura y presión. La temperatura es una medida de la energía cinética de las moléculas y átomos de un cuerpo. Un aumento de temperatura o una reducción de la presión favorecen la fusión, la evaporación y la sublimación, mientras que un descenso de temperatura o un aumento de presión favorecen los cambios opuestos.

Al calentar la sustancia la agitación de las partículas es mucho mayor, es decir, sube la temperatura. Hay que aclarar que la agitación no es la que provoca el calor, sino que la agitación es el propio calor. Si la sustancia es sólida y la agitación de sus partículas es suficiente, entonces la sustancia puede pasar de ser líquida a gaseosa, dependiendo del grado de agitación de las partículas, facilitando así la fusión, vaporización o sublimación de la sustancia.

Por el contrario al enfriar dicha sustancia la agitación de las partículas disminuye y permite realizar los cambios contrarios: solidificación, licuación o condensación, sublimación regresiva.

En ninguno de los cambios de estado las partículas se quedan quietas. Cuando las partículas están en estado sólido, vibran; cuando reciben energía en forma de calor aumenta la energía de las vibraciones lo que se traduce como un aumento de temperatura. Llega un momento en el que la vibración es tan alta que vence las fuerzas que mantienen juntas a las partículas, y así se sucede el cambio de estado. De igual forma ocurre con el cambio de estado de líquido a gaseoso.

  • El calor necesario para que se produzca el cambio de estado de una sustancia se llama calor latente (L)

Según el cambio de estado que sufra la sustancia puede ser, calor latente de fusión (Lf), calor latente de vaporización (Lv) o calor latente de sublimación (Ls).

El calor latente depende de algunos datos:

  • La masa (m) de dicha sustancia.
  • Cantidad de calor Q.
La formula es:
                            Q= m * L

 

Si quiere una mejor explicación de los cambios de estado vea el siguiente video:

Vídeo de YouTube

 

 

http://es.wikipedia.org/wiki/Cambio_de_estado

http://fisica.usac.edu.gt/public/tesis_lic/waleska_a/node17.html

 
MISSAEL COLIN CUEVAS

 

Comments