Felix Carbonell - Publications


Back to main page

  1. Ngano-Saito, A., Lissemore, J., Gravel, P., Leyton, M., Carbonell, F., Benkelfat, C. Posterior Dopamine D2/3 Receptors and Brain Network Functional Connectivity, Synapse, In press.
  2. Iturria-Medina, Y., Carbonell, F., Sotero, F., Chouinard, F., Evans, A. C. Multifactorial Causal Model of Brain (dis)Organization and Therapeutic Intervention: application to Alzheimer's Disease. NeuroImage, 152, 60-77, 2017.
  3. Kumdrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F., Evans, A. C. Cortical Thickness Abnormalities in Autism Spectrum Disorders Through Late Childhood, Adolescence, and Adulthood: A Large-Scale MRI Study. Cerebral Cortex, 27(3), 1721-1731, 2017.
  4. Khalili-Mahani, N., Rombouts, S., van Osch, M., Duff, E., Carbonell, F., Nickerson, L., Becerra, L., Dahan, A., Evans, A. C., Soucy, J. P., Wise, R. G., Zijdenbos, A. P., van Gerven, J. Biomarkers, Designs and Interpretations of Resting-State fMRI in Translational Pharmacological Research: a review of state-of-the-art, challenges and opportunities for studying brain. Human Brain Mapping, 38(4), 2276-2325, 2017.
  5. Carbonell, F., Zijdenbos, A. P., McLaren, D. G., Iturria-Medina, Y., Bedell, B. J. Modulation of glucose metabolism and metabolic connectivity by β-amyloid. Journal of Cerebral Blood Flow and Metabolism, 36(12), 2058-2071, 2016.
  6. Carbonell, F., Iturria-Medina, Y., Jimenez, J. C. Multiple Shooting-Local Linearization method for the identification of dynamical systems, Communications in Nonlinear Science and Numerical Simulation, 37, 292-304, 2016.
  7. Dawson, D., Lam, J., Lewis, L., Carbonell, F., Mendola, J., Shmuel, A. Partial correlation based retinotopically organized resting state functional connectivity within and between areas of the visual cortex reflects more than cortical distance, Brain Connectivity, 6(1), 57-75, 2016.
  8. Bellec, P., Benhajali, Y., Carbonell, F., Dansereau, C., Albouy, G., Pelland, M., Craddock, C., Collignon, O., Doyon, J., Stip, E., Orban, P. Multiscale statistical testing for connectome-wide association studies in fMRI, NeuroImage, 123, 212-228, 2015.
  9. Carbonell, F., Zijdenbos, A. P., Charil, A., Grand'Maison, M., Bedell, B. Optimal target region for subject classification based on amyloid PET images, Journal of Nuclear Medicine, 56(9), 1351-1368, 2015.
  10. Jimenez, J. C., Carbonell, F. Convergence rate of weak Local Linearization schemes for stochastic differential equations with additive noise, Journal of Computational and Applied Mathematics, 279, 106-122, 2015.
  11. Carbonell, F.Charil, A., Zijdenbos, A. P., Evans, A. C., Bedell, B. J. Hierarchical multivariate covariance analysis of metabolic connectivity. Journal of Cerebral Blood Flow and Metabolism, 34(12), 1936-1943, 2014.
  12. Carbonell, F.Charil, A., Zijdenbos, A. P., Evans, A. C., Bedell, B. J. β-amyloid is associated with aberrant metabolic connectivity in subjects with mild cognitive impairment. Journal of Cerebral Blood Flow and Metabolism, 34(7), 1169-1179, 2014.
  13. Wu, L.Soder, R., Schoemaker, D., Carbonell, F., Sziklas, V., Rowley, J., Mohades, S., Fonov, V., Bellec, P., Dagher, A., Shmuel, A., Jia, J., Gauthier, S., Rosa-Neto, P. Resting state executive control network adaptations in amnestic mild cognitive impairment. Journal of Alzheimer's Disease, 40(4), 993-1004, 2014.
  14. Carbonell, F., Nagano-Saito, A., Lyton, M., Cisek, P., Benkelfat, C., He, Y. and and Dagher, A. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks, Neuropharmacology, 84, 90-100, 2014.
  15. Carbonell, F., Bellec, P., Shmuel, A. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state. NeuroImage, 86(1), 343-353, 2014.
  16. Grand'Maison, M., Zehntner, S. P., Ho, M-K., Hébert, F., Wood, A., Carbonell, F., Zijdenbos, A. P., Hamel, E., Bedell, B. J. Early cortical thickness cganges predict beta-amyloid deposition in a mouse model of Alzheimer's disease. Neurobiology of Disease, 54, 59-67, 2013.
  17. De la Cruz, H., Biscay, R. J., Jimenez, J. C., Carbonell, F. Local Linearization-Runge Kutta Methods: a class of A-stable explicit integrators for dynamical systems. Mathematical and Computer Modelling, 57(3-4), 720-740, 2013.
  18. Khundrakpam, B., Reid, A., Brauer, J., Carbonell, F., Lewis, J., Ameis, S., Karama, S., Lee, J., Chen, Z., Das, S., Evans, A. C., and Brain Development Cooperative Group. Developmental changes in organization of structural brain networks. Cerebral Cortex, 23 (9), 2072-2085, 2013. 
  19. Carbonell, F., Bellec, P. and Shmuel, A. Global and system-specific BOLD fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks, Brain Connectivity, 1(6), 496-510, 2011.
  20. Carbonell, F., Worsley, K. and Galan, L., The geometry of the Wilks's Lambda random field, Annals of the Institute of Statistical Mathematics, 63, 1-27, 2011. (PDF).
  21. Gomes, F., Zhang, G., Carbonell, F., Correa, J., Harris, W.A., Simons, B. D. and Cayoutte, M. Reconstruction of rat retinal progenitor cell lineages reveals a surprising degree of stochasticity in cell-fate decisions, Development, 138(2), 227-235, 2011.
  22. Carbonell, F., Jímenez, J. C. and Biscay, R. J. QR-based method for computing Lyapunov Exponents of stochastic differential equations, International Journal of Numerical Analysis and Modeling (Serie B), 1(2), 147-171, 2010.
  23. Sotero, R. C., Bortel, A., Martinez-Cancino, R., Neupane, S., O’ Connor, P., Carbonell, F. and Shmuel, A. Anatomically-constrained effective connectivity among layers in a cortical column modeled and estimated from local field potentials, Journal of Integrative Neuroscience, 9(4), 355-379, 2010.
  24. de la Cruz, H., Biscay, R. J, Jímenez, J. C., Carbonell, F. and Ozaki, T. High order local linearization methods: an approach for constructing A-stable explicit schemes for stochastic differential equations with additive noise, BIT Numerical Analysis, 50(3), 509-539, 2010.
  25. Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z., He, Y and Evans, A. Age and Gender related differences in the cotical anatomical network, The Journal of Neuroscience, 29(50), 15684-15693, 2009.
  26. Lyttelton O., Karama. S., Ad-Dab’bagh, Y., Zatorre, R. J., Carbonell, F., Worsley, K. and Evans, A. C. Positional and surface area asymmetry of the human cerebral cortex, NeuroImage, 46 (4), 895-903, 2009.
  27. Jimenez, J. C and Carbonell, F. Rate of convergence of Local Linearization schemes for random differential equations, BIT Numerical Mathematics, 49(2), 357-373, 2009. (PDF)
  28. Carbonell, F., Worsley, K. and Trujillo, N. On the Fisher' Z transformation of correlation random fields, Statistics and Probability Letters, 79, 780-788, 2009. (PDF)
  29. Carbonell, F., Worsley, K., Trujillo, N. and Hernandez, M. The geometry of time-varying cross-correlation random fields, Computational Statistics and Data Analysis, 53, 3291-3304, 2009.  (PDF)
  30. Valdes-Sosa, P., Sanchez, M., Sotero, R., Iturria, Y., Aleman, Y., Bosch, J., Carbonell, F. and Ozaki, T. Model driven EEG/fMRI fusion of brain oscillations, Human Brain Mapping, 30 (9), 2701-2721, 2009.
  31. Carbonell, F., Worsley, K. Trujillo, N. and Sotero, R. Random fields-Union Intersection tests for detecting functional connectivity in EEG/MEG imaging, Human Brain Mapping, 30(8), 2477-2486, 2009. (PDF)
  32. Sotero, R., Trujillo, N., Jimenez, J. C., Carbonell, F. and Rodriguez, R., Identification and comparison of stochastic metabolic/hemodynamic models (sMHM) for the generation of the BOLD signal. Journal of Computational neuroscience, 26, 251-269, 2009.
  33. Carbonell, F. and Worsley K. On the geometry of a generalized cross-correlation random field, Statistics and Probability Letters, 78(18), 3129-3134, 2008. (PDF)
  34. Carbonell, F. and Jimenez, J. C., Weak local linear discretizations for stochastic differential equations with jumps, Journal of Applied Probability, 45, 201-210, 2008. (PDF)
  35. Carbonell, F., Jímenez, J. C. and Pedroso, L. M. Computing multiple integrals involving matrix exponentials, Journal of Computational and Applied Mathematics, 213, 300-305, 2008. (PDF)
  36. Carbonell, F., Biscay, R. J, Jimenez, J. C. and de la Cruz, H. Numerical simulation of nonlinear dynamical systems driven by commutative noise, Journal of Computational Physics, 226(2), 1219-1233, 2007. (PDF)
  37. De la Cruz, H., Biscay, R. J., Carbonell, F., Ozaki, T.  and Jímenez, J. C. A Higher Order Local Linearization Method for Solving Ordinary Differential Equations, Applied Mathematics and Computation, 185, 197-212, 2007. (PDF)
  38. Sotero, R. C., Trujillo, N., Iturria, Y., Carbonell, F. and Jímenez, J. C. Realistically coupled neural mass models can generate EEG rhythms, Neural Computation, 19(2), 478-512, 2007.
  39. Jímenez, J. C. Pedroso, L. M. Carbonell, F. and Hernandez, V. Local Linearization method for numerical approximation of delay differential equations, SIAM Journal on Numerical Analysis, 44(6), 2584-2609, 2006. (PDF)
  40. Carbonell, F., Jímenez, J. C. and Biscay, R. J. Weak local linear discretizations for stochastic differential equations: Convergence and Numerical schemes, Journal of Computational and Applied Mathematics, 197, 578-596, 2006. (PDF)
  41. De la Cruz, H., Biscay, R. J., Carbonell, F., Jímenez, J. C. and Ozaki, T. Local Linearization-Runge Kutta (LLRK) Methods for Solving Ordinary Differential Equations. Lecture Notes in Computer Science 3991, Springer-Verlag, 132-139, 2006. (PDF)
  42. Jímenez, J. C. and Carbonell, F. Local Linear Approximations for Jump Diffusion Processes, Journal of Applied Probability, 43, 185-194, 2006. (PDF)
  43. Jímenez, J. C. and Carbonell, F.  Rate of convergence of local linearization schemes for initial value problems, Applied Mathematics and Computation, 171, 1282–1295, 2005(PDF)
  44. Carbonell, F., Jímenez, J. C. and Biscay, R. J. A class of orthogonal integrators for stochastic differential equations, Journal of Computational and Applied Mathematics, 182, 350-361, 2005. (PDF)
  45. Carbonell, F., Jímenez, J. C. and Biscay, R. J. The Local Linearization method for numerical integration of random differential equations, BIT Numerical Mathematics, 45, 1-14, 2005. (PDF)
  46. Bobes, M. A., Lopera, F., Díaz-Comas, L., Galán, L., Carbonell, F., Bringas, M. L and Valdés-Sosa, M. Brain potentials reflect residual face processing in a case of prosopagnosia, Cognitive Neuropsychology, 21 (7), 691-718, 2004.
  47. Carbonell, F., Galán, L., Valdés, P., Worsley, K. J., Biscay, R. J., Díaz-Comas, L., Bobes, M. A. and Parra, M. Random Field-Union Intersection Tests for Linear Electrophysiological Imaging, Neuroimage, 22, 268-276, 2004. (PDF)
  48. Carbonell, F., Jímenez, J. C. and Biscay, R. J. A numerical method to compute Lyapunov exponents of nonlinear ordinary differential equations, Applied Mathematics and Computation, 131, 21–37, 2002. (PDF)
  49. Fernández, T., Harmony, T., Silva-Pereyra, J., Fernández-Bouzas, A., Gersenowies, J., Galán, L., Carbonell, F., Marosi, E., Otero, T., Valdés, S. I. Specific EEG frequencies at specific brain areas and performance, Neuroreport 11(12), 2663-2668, 2000.