Schema-agnostic Queries 
Semantic Web Challenge



The Challenge in a Nutshell

To create a query mechanism that semantically matches schema-agnostic user queries to knowledge base elements

The Goal

To support easy querying over complex databases with large schemata, relieving users from the need to understand the formal representation of the data

Relevance

The increase in the size and in the semantic heterogeneity of database schemas are bringing new requirements for users querying and searching structured data. At this scale it can become unfeasible for data consumers to be familiar with the representation of the data in order to query it. At the center of this discussion is the semantic gap between users and databases, which becomes more central as the scale and complexity of the data grows. Addressing this gap is a fundamental part of the Semantic Web vision. 

Schema-agnostic query mechanisms aim at allowing users to be abstracted from the representation of the data, supporting the automatic matching between queries and databases. This challenge aims at emphasizing the role of schema-agnosticism as a key requirement for contemporary database management, by providing a test collection for evaluating flexible query and search systems over structured data in terms of their level of schema-agnosticism (i.e. their ability to map a query issued with the user terminology and structure, mapping it to the dataset vocabulary). The challenge is instantiated in the context of Semantic Web datasets.