El Aire‎ > ‎

-Lluvia Acida

Lluvia ácida.

La lluvia ácida se forma cuando la humedad en el aire se combina con los óxidos de nitrógeno y el dióxido de azufre emitidos por fábricas, centrales eléctricas y vehículos que queman carbón o productos derivados del petróleo. En interacción con el vapor de agua, estos gases forman ácido sulfúrico y ácidos nítricos. Finalmente, estas sustancias químicas caen a la tierra acompañando a las precipitaciones, constituyendo la lluvia ácida.

Los contaminantes atmosféricos primarios que dan origen a la lluvia ácida pueden recorrer grandes distancias, siendo trasladados por los vientos cientos o miles de kilómetros antes de precipitar en forma de rocío, lluvia, llovizna, granizo, nieve, niebla o neblina. Cuando la precipitación se produce, puede provocar importantes deterioros en el ambiente.

La lluvia normalmente presenta un pH de aproximadamente 5.65 (ligeramente ácido), debido a la presencia del CO2 atmosférico, que forma ácido carbónico, H2CO3. Se considera lluvia ácida si presenta un pH de menos de 5 y puede alcanzar el pH del vinagre (pH 3). Estos valores de pH se alcanzan por la presencia de ácidos como el ácido sulfúrico, H2SO4, y el ácido nítrico, HNO3. Estos ácidos se forman a partir del dióxido de azufre, SO2, y el monóxido de nitrógeno que se convierten en ácidos.

Los hidrocarburos y el carbón usados como fuente de energía, en grandes cantidades, pueden también producir óxidos de azufre y nitrógeno y el dióxido de azufre emitidos por fábricas, centrales eléctricas y vehículos que queman carbón o productos derivados del petróleo.

Formación de la lluvia ácida.

Una gran parte del SO2 (dióxido de azufre) emitido a la atmósfera procede de la emisión natural que se produce por las erupciones volcánicas, que son fenómenos irregulares. Sin embargo, una de las fuentes de SO2 es la industria metalúrgica. El SO2 puede proceder también de otras fuentes, por ejemplo como el sulfuro de dimetilo, (CH3)2S, y otros derivados, o como sulfuro de hidrógeno, H2S. Estos compuestos se oxidan con el oxígeno atmosférico dando SO2. Finalmente el SO2 se oxida a SO3 (interviniendo en la reacción radicales hidroxilo y oxígeno) y este SO3 puede quedar disuelto en las gotas de lluvia, es el de las emisiones de SO2 en procesos de obtención de energía: el carbón, el petróleo y otros combustibles fósiles contienen azufre en unas cantidades variables (generalmente más del 1%), y, debido a la combustión, el azufre se oxida a dióxido de azufre.
           S + O2 SO2
Los procesos industriales en los que se genera SO2, por ejemplo, son los de la industria metalúrgica. En la fase gaseosa el dióxido de azufre se oxida por reacción con el radical hidroxilo por una reacción intermolecular.
           SO2 + OH· HOSO2· seguida por HOSO2· + O2 HO2· + SO 3
En presencia del agua atmosférica o sobre superficies húmedas, el trióxido de azufre (SO3) se convierte rápidamente en ácido sulfúrico (H2SO4).
           SO3(g) + H2O (l) H2SO4(l)
El NO se forma por reacción entre el oxígeno y el nitrógeno a alta temperatura.
           O2 + N2 2NO
Una de las fuentes más importantes es a partir de las reacciones producidas en los motores térmicos de los automóviles y aviones, donde se alcanzan temperaturas muy altas. Este NO se oxida con el oxígeno atmosférico,
           O2 + 2NO 2NO2, y este 2NO2
y reacciona con el agua dando ácido nítrico (HNO3), que se disuelve en el agua.
           3NO2 + H2O 2HNO3 + NO

Efectos de la lluvia ácida.

La acidificación de las aguas de lagos, ríos y mares dificulta el desarrollo de vida acuática en estas aguas, lo que aumenta en gran medida la mortalidad de peces. Igualmente, afecta directamente a la vegetación, por lo que produce daños importantes en las zonas forestales, y acaba con los microorganismos fijadores de N.

El termino "lluvia ácida" abarca la sedimentación tanto húmeda como seca de contaminantes ácidos que pueden producir el deterioro de la superficie de los materiales. Estos contaminantes que escapan a la atmósfera al quemarse carbón y otros componentes fósiles reaccionan con el agua y los oxidantes de la atmósfera y se transforman químicamente en ácido sulfúrico y nítrico. Los compuestos ácidos se precipitan entonces a la tierra en forma de lluvia, nieve o niebla, o pueden unirse a partículas secas y caer en forma de sedimentación seca.

La lluvia ácida por su carácter corrosivo, corroe las construcciones y las infraestructuras. Puede disolver, por ejemplo, el carbonato de calcio, CaCO3, y afectar de esta forma a los monumentos y edificaciones construidas con mármol o caliza.

Un efecto indirecto muy importante es que los protones, H+, procedentes de la lluvia ácida arrastran ciertos iones del suelo. Por ejemplo, cationes de hierro, calcio, aluminio, plomo o zinc. Como consecuencia, se produce un empobrecimiento en ciertos nutrientes esenciales y el denominado estrés en las plantas, que las hace más vulnerables a las plagas.

Los nitratos y sulfatos, sumados a los cationes lixiviados de los suelos, contribuyen a la eutrofización de ríos y lagos, embalses y regiones costeras, lo que deteriora sus condiciones ambientales naturales y afecta negativamente a su aprovechamiento.

Un estudio realizado en 2005 por Vincent Gauci[1] de Open University, sugiere que cantidades relativamente pequeñas de sulfato presentes en la lluvia ácida tienen una fuerte influencia en la reducción de gas metano producido por metanógenos en áreas pantanosas, lo cual podría tener un impacto, aunque sea leve, en el efecto invernadero.

Soluciones

Entre las medidas que se pueden tomar para reducir la emisión de los contaminantes precursores de éste problema tenemos las siguientes:

  • Reducir el nivel máximo de azufre en diferentes combustibles.
  • Trabajar en conjunto con las fuentes fijas de la industria para establecer disminuciones en la emisión de SOx y NOx, usando tecnologías para control de emisión de estos óxidos.
  • Impulsar el uso de gas natural en diversas industrias.
  • Introducir el convertidor catalítico de tres vías.
  • La conversión a gas en vehículos de empresas mercantiles y del gobierno.
  • Ampliación del sistema de transporte eléctrico.
  • Instalación de equipos de control en distintos establecimientos.
  • No agregar muchas sustancias químicas en los cultivos.
  • Adición de un compuesto alcalino en lagos y ríos para neutralizar el pH.
  • Control de las condiciones de combustión (temperatura, oxigeno, etc.).
  •  

 Efectos sobre la salud humana

No esta del Todo claro que las aguas subterráneas ácidas sean por si mismas nocivas para la salud. Pero si se conoce el efecto negativo de los metales como el aluminio y el cadmio que se libera en la tercera etapa a pH inferiores a 5. Aunque se ha encontrado casos altos de niveles de plomo zinc y cadmio aun a pH superiores

Con respecto a los metales tenemos:

Cadmio: ES el más móvil de los metales pesados comunes y debido a las latas concentraciones presentes en los países industrializados, es necesario alertar sobre su presencia. El cadmio se acumula en la corteza renal causando graves lesiones. Las principales fuentes son los fertilizantes y las debidas a la acidificación de las aguas subterráneas.

Cobre: Debido a que es el metal con el cual se construye la mayoría de las cañerías, cuando las aguas se tornan corrosivas dicho elemento es disuelto. Uno de los efectos más comunes sobre la es la diarrea infantil.

Aluminio: Es el más común en la corteza terrestre y si bien está unido a los minerales que constituyen la misma, la acidificación lo torna soluble. El aluminio penetra en la corriente sanguínea en forma directa pasando las barreras de protección normales del ser humano y provocando graves daños al cerebro y al sistema óseo. Si la concentración es muy elevada puede causar demencia senil y muerte.

Plomo: También se libera por acidificación de las aguas y en los países donde este elemento es utilizado para la construcción de las cañerías de agua la situación se puede tornar bastantes peligrosa. Dicho elemento provoca daños considerados a nivel cerebral, sobre todo en los niños.

 Efecto de la acidificación sobre los bosques

Los árboles dañados exhiben una serie de síntomas pero es muy dificultoso establecer una conexión entre cada tipo de daño y las causas correspondientes. El aire contaminado afecta directamente e indirectamente los árboles.

Los efectos directos consisten en daños sobre las hojas debido a que la capa de grasa protectora es corroída por el depósito seco de dióxido de azufre, la lluvia ácida o el ozono.

Además de las membranas constituyentes de la estructura interna del árbol son atacadas provocando la pérdida de nutrientes.

Los efectos indirectos están relacionados con la acidificación del suelo lo que produce una reducción de nutrientes y una liberación de sustancias perjudiciales para el árbol como lo es el aluminio.

La sensibilidad de las diferentes especies frente a los contaminantes atmosféricos varía de acuerdo con la superficie de las hojas y la caducidad de las mismas.

El daño sobre los abetos se traduce en un color marrón amarillento de sus hojas, pérdidas de las mismas y deterioro de sus raíces.

Los pinos sufren también decoloración con estrechamiento de su extremo cónico superior por pérdida de sus hojas.

Incidencia de los deterioros sobre los bosques

La forestación en Escandinavia es importante para toda Europa Occidental dado que es la mayor fuente de materia prima en la industria de la madera. Cerca del 80% de sus producción está destinada a la exportación.

Además los bosques son el ambiente natural para varias especies de insectos, pequeños animales, plantas y mamíferos de mayor tamaño.

Por último no se debe olvidar la función que desempeñan en el mantenimiento de la economía del agua y en la regulación de los climas tanto locales como regionales.

 Efectos en los Cultivos.

Aunque la sensibilidad hacia el daño foliar directo por la lluvia ácida de algunos cultivos parece ser mayor que la de muchas especies de árboles, no existen pruebas sólidas de que las hojas de los cultivos hayan sido dañadas por gotas ácidas en el campo (NATO, 1980). No obstante, algunos estudios detallados han comenzados a insinuar que incluso en un sistema agrícola bien amortiguado la lluvia ácida puede ser perjudicial. En un estudio realizado por Lee y Neely (1980) a 27 plantas agrícolas cultivadas en tiestos y expuestas a lluvia ácida simulada con un intervalo de pH de 2.5 a 5.7, aparecieron lesiones visibles y desagradables en el follaje en 21 cultivos a un pH de 3.0, el cual se presenta con una frecuencia de precipitación de 0.5 a 1.0% en las regiones afectadas de Norteamérica. Los estudiosos de cultivos importantes de Ontario realizados por Hutchinson (1981) mostraron que las lluvias con pH entre 2.5 y 3.0 afectaban seriamente la lechuga, el betabel, la cebolla, la soya, el fríjol pinto y el tabaco. Cultivos como el tabaco, la lechuga y la espinaca dependen de un follaje saludable para su venta. Por toro lado, los estudioso realizados en el Brookhaven National Laboratory de Estados Unidos (Evans et al.,1983) demostraron que las plantas expuestas a precipitaciones ácidas simuladas de un pH de 4.2, 3.8 y 3.5 tuvieron rendimientos de semilla menores en 2.6, 6.5 y 11.4% respectivamente, en comparación con plantas expuestas solo a precipitación ambiental. Estos daños de semilla en un cultivo importante, como la soya, equivaldrían a pérdidas de muchos millones de dólares al año en Estados Unidos.

De manera experimental se ha demostrado que la etapa crítica del ciclo vital de las plantas, en la cual el polen se transfiere a la flor hembra y lo fertiliza para producir un largo tubo (de polen), es muy sensible a un pH bajo (sidhu, 1983). En general la germinación y el crecimiento del tubo plìnico de manzanas y uvas se reducen con un pH igual o menor a 3.5. en estudios de especies forestales boreales (Cox, 1983) se encontró que el polen de abedul es muy sensible, en tanto que el polen de un buen fruto en el tiempo de la polinización, la lluvia ácida plantea un peligro que no ha sido evaluado.

En resumen, queda claro que los sistemas terrestres son menos sensibles a la sedimentación ácida que los sistemas acuáticos. Algunos efectos a corto plazo de la lluvia ácida pueden ser benéficos, probablemente a causa de las aportaciones de nitrógeno fertilizante. Sin embargo, a largo plazo es muy posible que se produzcan efecto dañinos. Sin duda se afectarán los ciclos y los equilibrios de los nutrientes en el bosque, y el crecimiento de los árboles puede menguar.

 Efectos sobre la fauna y flora

Con respecto a las plantas, las especies que se ven más afectadas son los líquenes y los musgos que toman directamente el agua a través de sus hojas. Además estas especies son indicadores directos de la contaminación atmosférica como es el caso de los líquenes respecto a las emisiones de SO2.

También en el caso de los pájaros pequeños que viven cerca de aguas acidificadas se ve afectada su reproducción.

Los huevos de varias especies de pájaros aparecen con paredes muy delgadas debido al aluminio ingerido a través de los insectos de los cuales se alimentan. Dichos insectos precisamente se desarrollan en aguas acidificadas.

Los animales herbívoros se ven afectados ya que al acidificarse los suelos, las plantas que aquellos ingieren, acumulan una mayor cantidad de metales pesados (aluminio, cadmio, etc.)

Resumiendo lo anterior, se puede afirmar que la fauna también se verá afectada por los cambios en la composición y estructura de la vegetación.

Si, por ejemplo, los bosques son dañados, se producirán grandes cambios en las especies animales que integran el ecosistema forestal.

 Efectos sobre las aguas subterráneas

Parte importante de las precipitaciones penetran a través del suelo y cuanto más permeable sea el mismo, más profundidad alcanza.

En áreas donde el suelo está densamente compactado, la casi totalidad del agua caída fluye hacia los lagos y otras corrientes.

El agua que ha percolado alcanza por último, niveles donde el suelo está completamente saturado pasando a formar parte de las aguas subterráneas que son la principal fuente de suministro de agua.

Las aguas en los lagos son siempre más ácidas que las aguas subterráneas debido a la función de filtro que desempeña el suelo, removiendo así gran parte del ácido.

Si el suelo está constituido por material finamente granulado y el pozo de atracción es lo suficientemente profundo, el agua de lluvia ha sido neutralizada y al ser extraída no presenta problemas de acidificación.

La acidificación de las aguas subterráneas se realiza en tres etapas.

  1. Primero disminuye la capacidad de los suelos de neutralizar las precipitaciones. Aumentan los niveles de sulfato, calcio y potasio, en las aguas subterráneas, no existiendo ningún otro efecto que altere la calidad del agua. En esta etapa el agua se torna corrosiva y ataca las cañerías.

2.    Luego de esta etapa la acción neutralizante del suelo decae aún más y el efecto buffer de las aguas subterráneas comienza a disminuir. Se nota en esta etapa un aumento en el poder corrosivo sobre metales y concreto.

3.    Por último, la capacidad neutralizante del suelo desaparece y los valores de pH descienden con un aumento en las concentraciones de metales en las aguas de los pozos, tornándose aún más corrosivos.

Efectos en construcciones, materiales y pinturas.

Las construcciones, las estatuas y los monumentos de piedra sufren erosión por efecto de diversos contaminantes que arrastra el aire, entre ellos la lluvia ácida. Los materiales de construcción como acero, pintura, plásticos, cemento, mampostería, acero galvanizado, piedra caliza, piedra arenisca y mármol también están expuestos a sufrir daños. La frecuencia con la que es necesario aplicar nuevos recubrimientos protectores a las estructuras va en aumento, con los consecuentes costos adicionales, los cuales se estiman en miles de millones de dólares anuales.

Los efectos de los diversos contaminantes todavía no se pueden separar unos de otros de manera confiable. Sin embargo se acepta que el principal agente corrosivo individual de los materiales de construcción es el dióxido de azufre y sus productos secundarios.

Las piedras arenisca y caliza se han utilizado con frecuencia como materiales para monumentos y esculturas. Ambas se corroen con más rapidez en el aire citadino cargado de azufre que en el aire campestre libre de azufre. Cuando los contaminantes azufrados se depositan en una superficie de piedra arenisca o caliza, reaccionan con el carbonato de calcio del material y lo convierten en sulfato de calcio (yeso), fácilmente soluble, que se deslava con la lluvia. En el Informe sobre lluvia ácida, encargado por el gobernador de Ohio en 1980 (Scientifie Advisory Task Force, 1980), el comité afirma que "la lluvia ácida es motivo de preocupación especial a causa de sus efectos en estructuras de importancia arqueológica o histórica". La desfiguración y disolución de famosas estatuas y monumentos, como la Acrópois de Atenas y tesoros artísticos de Italia se ha acelerado considerablemente en los últimos 30 años, en muchos casos en obras que han estado en pie por siglos. Esto es una tragedia de la cual no es posible hacer un análisis económico.

Comments