To be held in conjunction with Twelfth SIAM International Conference on Data Mining (SDM 2012)

                                         Workshop Chairs                          

                                                    Sitaram Asur
                                                    Social Computing Research Group
                                                    Hewlett-Packard Labs
                                                    Phone: (650)-857-2935
                                                    Fax: (650)-852-8156

                                                    Email: sitaram.asur(at)

                                                    Duygu Ucar
                                                    Department of Genetics, 
                                                    Stanford University
                                                    Phone: (614) 218-4637
                                                    Email: ducar (at)

 Workshop Program - April 28th 2012

      8:30 – 9:30 AM         Invited Talk - Dr. Srinivasan Parthasarathy, Ohio State University
        9:30 – 10:00 AM      Full Paper - Swayed by Friends or by the Crowd?
        10:00 – 10:30 AM     Coffee Break
          10:30 – 11:00 AM      Full Paper - Algorithms for Offline Tracking of Connected Components in Large Evolving Networks
            11:00 – 11:30 AM      Full Paper - Artificial Inflation: the Real Story of Trends in Sina Weibo
              11:30 – 11:45 AM      Short Paper - Retrieval of Relevant and Non-redundant Nodes
                11:45 – 12:00 PM      Short Paper - The Pulse of News in Social Media: Forecasting Popularity

                Call for Papers

                In the recent years, rapid advances in technology have led to an exponential growth in data, with billions and trillions of observations being generated constantly in numerous domains such as astronomy, sociology, computer science, biology, chemistry, metabolism and nutrition. It has been observed that real world data from these diverse domains can be modeled as complex networks where nodes represent entities of interest and edges mimic the interactions or relationships among them. Specific examples include, but are not limited to, social networks, co-authorship networks, World Wide Web, metabolic networks, and peer-to-peer networks. 

                These networks, while diverse in their applications and use, share some common challenges --- community discovery, dynamic nature, modeling for spread and diffusion, link prediction, etc. In the case of large online networks such as Facebook, MySpace and Twitter, Wikipedia, weblogs and community photo and video sharing applications, researchers have recognized the need for community mining, i.e, analysis of linked groups of entities, to identify interesting structural and behavioral properties. In biological networks communities can be mapped to informative structures, such as functional groups of proteins and genes, regulatory modules, and protein complexes. Also, since these networks are typically dynamic in nature, it is crucial to consider the evolutionary aspect of these networks to identify and model key structural and behavioral changes occurring in these networks over time. For biological networks, network dynamics might reveal cellular level responses to changing conditions, including drug treatment, stress, and disease progression. Therefore, studying the dynamics of these networks provides great potential for knowledge discovery. 

                The 1st SDM Workshop on Dynamic Network Analysis is designed to be a common-themed interdisciplinary workshop that bridges social networks, communication networks, and biological networks. The aim is to attract researchers/practitioners from multiple scientific disciplines into a fruitful discussion about the the state-of-the-art techniques and applications of network analysis in diverse domains.  To this end, we expect participation from computational areas such as Data Mining, Machine Learning, Statistics, Applied Mathematics, as well as life sciences and inter-disciplinary fields such as Computational Biology, Biostatistics and Biophysics. It is our expectation that this workshop would present an attractive venue to bring together researchers and practitioners from diverse backgrounds and provide a forum to foster a new cross-disciplinary research community.

                Topics of Interest

                We solicit high quality papers in the general areas of network analysis including novel computational techniques for network construction, mining and analysis as well as novel applications of these computational tools in diverse disciplines such as Social Sciences, Computer Science, Life Sciences and Biology.

                Topics of interest include but are not limited to:

                    1. Constructing useful information networks from raw datasets

                    2. Analysis and inferences of structure, behavior and causality from information networks

                    3. Evolution of patterns and communities in networks

                    4. Link and trend prediction 

                    5. Time-series Analysis

                    6. Content-based analysis 

                    7. Analysis of temporal dynamics in networks

                    8. Data mining and machine learning algorithms for networks

                    9. Qualitative and quantitative models and metrics

                    10. Applications of network analysis in Web, social, biological, clinical and computer science

                All submitted papers will be peer reviewed. If accepted, at least one of the authors must attend the workshop to present the work. Selected accepted papers will be recommended for submission to special issues of journals.

                 Important Dates

                Paper Submission: January 18, 2012 

                Notification of Acceptance: February 13, 2012

                Camera Ready Paper Due: Feb 24th, 2012

                Submission Information

                Authors are required to submit their papers in PDF format using the Easy Chair system at
                All accepted papers should have a maximum length of 9 pages (single-spaced, 2 column, 10 point font, and at least 1 inch margin on each side). Authors should use US Letter (8.5 in x 11 in) paper size. Papers must have an abstract with a maximum of 300 words and a keyword list with no more than 6 keywords. We would like to encourage you to prepare your paper in LaTeX2e. Papers should be formatted using the SIAM SODA macro, which is available through the SIAM website. You can access it at The filename is soda2e.all. Make sure you use the macros for SODA and Data Mining Proceedings; papers prepared using other proceedings macros will not be accepted. For Microsoft Word users, please convert your document to the PDF format. All submissions should clearly present the author information including the names of the authors, the affiliations and the emails. 

                Program Committee

                •   Srinivasan Parthasarathy (Ohio State University, USA) 
                •   Gabor Szabo (Twitter, USA)
                •   Daniel M Romero (Cornell University, USA)
                •   Neel Sundaresan (Ebay Research Labs, USA)
                •   Kai Tan (University of Iowa)
                •   Gurkan Bebek (Case Western Reserve University)
                •   Umit Catalyurek (Ohio State University)
                •   Emek Demir (Memorial Sloan-Kettering Cancer Center)
                •   Mehmet Koyuturk (Case Western Reserve University)
                •   Kristina Lerman (University of Southern California)
                •   Hui Yang (San Francisco State University)
                •   Louis Yu (HP Labs)