Single-Atom Memory


Data Storage

 

 

 

 

 

 

 

 

In the first report, IBM scientists describe major progress in probing a property called magnetic anisotropy in individual atoms. This fundamental measurement has important technological consequences because it determines an atom’s ability to store information. Previously, nobody had been able to measure the magnetic anisotropy of a single atom.

With further work it may be possible to build structures consisting of small clusters of atoms, or even individual atoms, that could reliably store magnetic information. Such a storage capability would enable nearly 30,000 feature length movies or the entire contents of YouTube – millions of videos estimated to be more than 1,000 trillion bits of data – to fit in a device the size of an iPod. Perhaps more importantly, the breakthrough could lead to new kinds of structures and devices that are so small they could be applied to entire new fields and disciplines beyond traditional computing.

In the second report, IBM researchers unveiled the first single-molecule switch that can operate flawlessly without disrupting the molecule's outer frame -- a significant step toward building computing elements at the molecular scale that are vastly smaller, faster and use less energy than today's computer chips and memory devices.

In addition to switching within a single molecule, the researchers also demonstrated that atoms inside one molecule can be used to switch atoms in an adjacent molecule, representing a rudimentary logic element. This is made possible partly because the molecular framework is not disturbed.

The Science of The Small: Understanding the Magnetic Properties of Atoms

In the paper titled “Large Magnetic Anisotropy of a Single Atomic Spin Embedded in a Surface Molecular Network,” the researchers used IBM’s special scanning tunneling microscope (STM) to manipulate individual iron atoms and arranged them with atomic precision on a specially prepared copper surface. They then determined the orientation and strength of the magnetic anisotropy of the individual iron atoms.

Anisotropy is an important property for data storage because it determines whether or not a magnet can maintain a specific orientation. This in turn allows the magnet to represent either a “1” or “0,” which is the basis for storing data in computers.

“One of the major challenges for the IT industry today is shrinking the bit size used for data storage to the smallest possible features, while increasing the capacity,” said Gian-Luca Bona, manager of science and technology at the IBM Almaden Research Center in San Jose, California. “We are working at the ultimate edge of what is possible – and we are now one step closer to figuring out how to store data at the atomic level. Understanding the specific magnetic properties of atoms is the cornerstone of progressing toward new, more efficient ways to store data.”