Altruism

In Origins, Darwin did not examine the question of altruistic behavior in great detail. But he did explain that natural selection could not result in destructive behavior. After all, evolution is driven by reproductive differentials and “every single organic being may be said to be striving to the utmost to increase in numbers.” (Darwin, 52)
 
But today we know of many examples of unambiguous altruism which are destructive to reproductive chances. It is not controversial that the evolutionary prediction Darwin issued has been falsified many times over. Indeed, a plethora of designs are “more injurious than beneficial” (Darwin, 162) to reproduction. They are found everywhere, from the mindless, single-cell bacteria to the many subtle behavior patterns of humans.
 
Consider those who choose to have few or no children. Such behavior is not uncommon, and it certainly harms one’s reproductive success. There are also many examples of altruism including giving blood and donating organs, giving to charities, helping the needy, and heroic wartime acts such as smothering a grenade or rescuing prisoners. Such acts of love and kindness falsify the evolutionary expectation that organisms should be oriented toward high levels of reproductive success.
 
Kin selection
 
In the last fifty years evolutionists have proposed several explanations for altruistic behavior. As a consequence the theory has become enormously more complex and incredible. First, the hypothesis of kin selection was proposed by William Hamilton in the early 1960s. (Hamilton) It has since become fundamental in evolutionary explanations of altruism. The idea is that altruistic behavior is a consequence of shared genes. For example, consider a genetic modification that encourages siblings to help each other. Such altruism increases the reproductive success of the sibling. If the sibling shares the genetic modification (as they well might), then the altruistic gene ends up helping to propagate a copy of itself. Thus the behavior is not quite so altruistic after all. From the evolutionary perspective of reproductive success, altruistic behavior makes sense where there are shared genes.
 
Therefore, the hypothesis of kin selection implies that altruism will be greatest where gene sharing is greatest, such as between siblings and between parent and child, in human relationships. On the other hand, altruism will be weaker when there is less gene sharing (e.g., between cousins).
 
In addition to the degree of gene sharing, the hypothesis of kin selection also implies that altruism will depend on the number of individuals being helped. A person will be more inclined to aid multiple siblings, for there would be more shared genes at stake. As Hamilton put it, the hypothesis implies that while no one is prepared to sacrifice his life for any single person, everyone will sacrifice it for more than two brothers, or four half-brothers, or eight first-cousins. (Hamilton)
 
A more complicated selection process
 
Within a few years kin selection was used to explain a wide range of behaviors in addition to altruism. (e.g., Trivers, 1971; Williams) But these explanations brought with them an enormously complex evolutionary process. Consider altruism between siblings. Evolution’s unguided genetic modifications must have somehow created this complex behavior. This new modification created a medium level of altruism toward people that could be recognized as sisters or brothers. It was not too much altruism or too little. It was not toward females rather than males, short people rather than tall people, or blondes rather than brunettes. Presumably all these, and many more, types of behavior would be just as likely to have arisen as was the needed sibling altruism. So evolution must have constructed, tested and selected from an enormous set of potential behaviors before finding the few, rare behaviors that fit the kin selection criteria.
 
And the testing of these behaviors would not be simple. Initially, a new behavior, such as sibling altruism, would not fit the kin selection criteria. This is because, initially, the genes for the new behavior are in only a single individual. Not until the next generation could the genes possibly be distributed amongst siblings. And when that time does come, there is the question of whether the altruistic behavior would actually enhance the reproductive chances of the sibling. Being kind to a sibling does not necessarily do the job the first time. Many generations might be needed, as kin selection can only occur when an altruistic act genuinely improves the reproductive success of the sibling.
 
Evolution’s creative powers
 
Even more of a problem for evolution is the creation of these complex behaviors. Somehow unguided genetic modifications must have resulted in genes for a wide range of attitudes and behaviors. The list is staggering. There are of course the obvious behaviors such as love, hate, guilt, retribution, social tendencies and habits, friendship, empathy, gratitude, trustworthiness, a sense of fulfillment at giving aid and guilt at not giving aid, high and low self esteem, competition, and so forth.
 
These behaviors are supposed to have evolved according to the kin selection criteria, along with many more nuanced behaviors. For instance, love not only evolved, but in varying degrees depending on the degree of shared genes. It is weaker within the extended family than within the family. Low self esteem behavior not only evolved, but the art of not hiding it can be advantageous and so also evolved. Sibling rivalries evolved, but only to a limited degree. In wealthy families, it is more advantageous for siblings to favor sisters while in poor families siblings ought to favor brothers. So those behaviors evolved. Mothers in poor physical condition ought to treat daughters as more valuable than sons. Likewise, socially or materially disadvantaged parents ought to treat daughters as more valuable than sons.
 
Evolutionists explain all these nuanced behaviors according to the calculus of kin selection. For instance, consider sympathy and compassion. According to evolution, compassion and sympathy are nothing more than cleverly disguised manipulations. For while we may like to think our sympathy is pure, in fact it comes at a price. The unspoken yet universal expectation is: “you owe me one.” As one science writer put it, “Exquisitely sensitive sympathy is just highly nuanced investment advice. Our deepest compassion is our best bargain hunting.” (Wright, 205) What such explanations fail to explain is the enormous complexity now added to the theory. Yes, the altruism is explained as advantageous, but such nuanced behaviors must somehow have arisen in the first place, in order to be later selected.
 
And, evolutionists warn, we should not be fooled by our intuition that certain behaviors are “obvious,” or “right.” For instance, love for one’s children and grief at the death of a child may seem to be natural reactions, but evolutionists explain that what seems to us to be common sense is, itself, merely a manifestation of our evolved behaviors. Yes we love our children, but only because such a behavior was selected. We have evolution to thank for our heartfelt emotions.
 
But do not many of our moral sentiments and behaviors reflect right and wrong? Are not loyalty, sacrifice, honor, our sense of justice, obligation and shame, remorse and moral indignation more than merely the result of mutations and selection? No, warn evolutionists, such appeals only reveal the power of evolution. As one writer put it, “It is amazing that a process as amoral and crassly pragmatic as natural selection could design a mental organ that makes us feel as if we’re in touch with higher truths. Truly a shameless ploy.” (Wright, 212)
 
In fact, evolutionists explain, evolution has constructed elaborate deception mechanisms. Children use temper tantrums to manipulate parents. Parents countered this with the ability to discern and children, in turn, refined their manipulation with heartfelt whining. All a result of the complexities of natural selection. Cheating, suspicion, exaggeration, embellishment, hypocrisy, displays of morality, false compliments, self-serving dishonesty, boasting and self-deprecation are all evolved behaviors in accordance with natural selection.
 
Deception is rampant and evolutionists believe it evolved in biology to enhance reproduction. In turn, the ability to recognize deception has evolved, which in turn spurred the evolution of some degree of self deception, to better fool the opponent. This self deception should not be underestimated. It really means that we are, to a certain degree, truly deceived about the world around us. Our brains did not evolve to know truth, but some skewed version of reality. As one evolutionist concluded, “the conventional view that natural selection favors nervous systems which produce ever more accurate images of the world must be a very naïve view of mental evolution.” (Trivers, 1976)
 
Here evolution aligns itself with radical skepticism. Nothing can be known to be true. If evolution is true, then not only are our minds nothing more than the product of unguided natural processes, but those very processes inbred a certain degree of falsehood. The evolutionist’s claim that evolution is a fact is self-refuting, for it leads to the conclusion that they cannot know that evolution is a fact.
 
Regardless of how deceived we are, we do know that evolution now calls for unguided genetic variation to create an incredible menagerie of complex and nuanced behavior. The enormous inventory of human behavior, which was selected, is only a tiny fraction of what must have been created. It would be swamped by the myriad behaviors which were not advantageous. In order to explain altruism, evolutionists now make a staggering claim about what must have arisen in nature. But the claim is a trade secret, as it is rarely discussed. Evolution has become a theory of seemingly endless speculation about behavior with little explanation of how the specific behaviors actually are supposed to have arisen. Evolutionists speculate at length about how behaviors could have been advantageous, with little consideration of the origin of such behaviors. Here is a representative example of this speculation, regarding an imagined behavioral strategy called “Selfish Punisher,” which exploits altruists and punishes other selfish individuals.
 
Individuals who behave altruistically are vulnerable to exploitation by more selfish individuals within their own group, but groups of altruists can robustly out-compete more selfish groups. Altruism can therefore evolve by natural selection as long as its collective advantage outweighs its more local disadvantage. All evolutionary theories of altruism reflect this basic conflict between levels of selection. It might seem that the local advantage of selfishness can be eliminated by punishment, but punishment is itself a form of altruism. For instance, if you pay to put a criminal in jail, all law-abiding citizens benefit but you paid the cost. If someone else pays you to put the criminal in jail, this action costs those individuals something that other law-abiding citizens didn’t have to pay. Economists call this the higher-order public goods problem. Rewards and punishments that enforce good behavior are themselves forms of good behavior that are vulnerable to subversion from within. (Binghamton University)
 
Sub hypotheses such as this are now rampant within evolutionary theory. They are required to explain the wide range of behaviors in biology, and they force evolution to unprecedented levels of complexity. Unguided genetic change must be capable of somehow generating a wide array of behaviors with incredible precision.
 
And not only must all these varied and nuanced behaviors have arisen via unguided genetic modifications, but orders of magnitude more behaviors, which were not advantageous, must also have arisen. If unguided genetic variations were able to generate such pinpoint behaviors from which selection could choose, then there must also have been a vast menagerie of bizarre behaviors that were not selected. For the genetic variations were unguided. There was no foreknowledge of which behaviors were advantageous and which were not. The latter vastly outnumber the former, and so any given variation was most likely selected against. Only the rare exceptions were advantageous and evolutionary history must be chocked full of never observed pathologies that would not pass evolution’s test.
 
Problem of non reciprocal altruism
 
In addition to the tremendous complexity that kin selection adds to the theory of evolution, there is the problem that it does not explain altruistic behaviors for which no advantage to the individual can be imagined. Why do soldiers smother grenades? Why do rescuers risk their lives? Why does Mother Theresa help the needy in far away countries? Kin selection does not explain altruistic acts where there is no advantage to one’s own genes.
 
To explain such altruism, evolutionists must turn to unlikely speculation. For instance, a popular explanation is that in earlier ages our ancestors lived in small clans and villages where blood relations where more common. If most everyone in the village was a relative of yours, then altruistic behaviors would be advantageous more often. By the time civilization expanded into cities and nations, the altruistic behavior had evolved. So now we give aid to unrelated people because our evolved genes consider all people to have at least some relation to us.
 
In this model today’s examples of altruism that do not seem explainable using kin selection are viewed as vestigial behaviors. They were selected in the past, but now are operating outside the scope of kin selection. So although, as we saw above, evolution must have tremendous precision in creating finely tuned, nuanced behaviors, here evolution becomes a crude instrument. When needed, evolution can act with surgical precision. But when problems arise, evolution is suddenly clumsy. It is remarkable that, on the one hand Mother Theresa is left clueless that orphans on the other side of the world do not share her genes, yet on the other hand evolution can precisely construct detailed behaviors such as the Selfish Punisher strategy, the detailed altruism profiles between wealthy and poor families, and so forth. Mother Theresa falsifies the evolutionary expectations. As a consequence the theory is forced to adopt low probability, high complexity modifications. The theory is not explaining the data, it is adapting to the data.
 
Several other explanations have also been contemplated. For instance, perhaps aiding another individual enhance one’s status and attractiveness. Perhaps selection occurs at higher levels than the gene. (Wilson, Wilson; Bowles) Or perhaps what seems to be selfless altruism actually plays to self-centered motives. Yes, “Mother Theresa is an extraordinary person,” explained one evolutionist, “but it should not be forgotten that she is secure in service of Christ and the knowledge of her Church’s immortality.” (Wilson) Ultimately, even helping the poor on the other side of the world can be rationalized with natural selection. With these and other explanations, evolutionists are able to provide some sort of selection rationale for practically any behavior.
 
Conclusions
 
Darwin’s theory of evolution led him to several expectations and predictions, regarding behavior in general, and altruism in particular. We now know those predictions to be false. Furthermore, in order to explain many of the behaviors we find in biology, evolutionists have had to add substantial serendipity to their theory. The list of events that must have occurred to explain how evolution produced what we observe is incredible and the theory has become absurdly complex.
 
References
 
Binghamton University. 2008. “Selfishness May Be Altruism's Unexpected Ally.” ScienceDaily May 2.
 
Bowles, Samuel. 2006. “Group competition, reproductive leveling, and the evolution of human altruism.” Science 314:1569-1572.
 
Darwin, Charles. 1872. The Origin of Species. 6th ed. London: John Murray.
http://darwin-online.org.uk/content/frameset?itemID=F391&viewtype=text&pageseq=1
 
Hamilton, William D. 1964. “The genetical evolution of social behavior.” J Theoretical Biology 1:1-52.
 
Trivers, Robert. 1971. “The evolution of reciprocal altruism.” Quarterly Review of Biology 46:35-56.
 
Trivers, Robert. 1976. In: Richard Dawkins, The Selfish Gene. New York: Oxford University Pres.
 
Williams, George. 1966. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought. Princeton: Princeton University Press.
 
Wilson, Edward O. 1978. On Human Nature. Cambridge, MA: Harvard University Press.
 
Wilson, David Sloan, Edward O. Wilson. 2007. “Rethinking the theoretical foundation of sociobiology.” Quarterly Review of Biology 82:327-348.

Wright, Robert. 1994. The Moral Animal. New York: Vintage Books.