Ejercicios

 
       
Suma de fracciones con diferente denominador
 

  Para poder sumar fracciones debemos conocer la definición de números primos, los criterios de divisibilidad y m.c.m,por lo cual el contenido lo veremos más adelante.

 

   Los números primos son aquellos que tienen la propiedad de poseer únicamente dos divisores: el mismo número y el 1, que es divisor de todo número.

 

Observemos los siguientes ejemplos, los números 2,7 decimos que son primos por ser divisible por sí mismo y por la unidad y el 4 no es un numero primo porque además de la unidad y el mismo tiene otro divisor que es el numero 2.

A continuación te presentamos una lista de números primos:

í2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97... ý

 

Criterio de divisibilidad
 
Divisibilidad del 2: Los números son divisibles por 2 si último dígito del número es 0 ó en un número par.Esto significa que los números pares se pueden dividir por dos. Ejemplos: 24, 2138, 40

 

Divisibilidad del 3: Los números son divisibles por 3 si la suma de los dígitos es exactamente divisible por 3. Por ejemplo: Si queremos saber que 3627 es divisible por 3, basta con sumar sus dígitos: 3+6+2+7= 18, que es divisible por 3, entonces el número 3627 es divisible por 3.

 

Divisibilidad del 5: Los números son exactamente divisibles por 5 si el último dígito del número es 0 ó 5. Ejemplos: 25, 2235, 40

 

Divisibilidad del 7: Para determinar si un número es divisible por 7, saca el último dígito del número, duplícalo y réstalo del número restante. Si este resultado es exactamente divisible por 7 (ej, 14, 7 , 0 , -7, etc.) entonces el número es divisible por 7. Puede ser que necesites repetir esto varias veces.

Ejemplo: Es 1078 divisible por 7?
 
 

 107         - saca el último dígito del número que es el 8

 -16   - dobla el dígito separado y réstalo

 91    - repite el proceso sacando el 1

   9    - dobla el dígito separado y réstalo

  -2   -  y dóblalo para obtener 2 y réstalo

  7    - el resultado es 7 que es un múltiplo de 7 
 

 

   Los criterios de divisibilidad son importantes ya que nos permiten identificar si un número es divisible por 2,3,5, 7 sin realizar ninguna división, lo cual nos permite ahorrar tiempo en la descomposición de factores primos.

 

Descomposición  los números en factores primos
 

   Para descomponer en factores primos debemos tomar en cuenta los criterios de divisibilidad antes mencionados.

 

Ejemplos: vamos a descomponer el 24, 36 y 40

 

Observemos, como se expresa en potencia la descomposición

 


Mínimo común múltiplo de dos o más números


El mínimo común múltiplo de dos números es el más pequeño de los múltiplos comunes a ambos.

 

 
Observa que los números 12 y 24 se repiten en ambos casos y son al mismo tiempo, múltiplos del 2,3 y 4.
 

El más pequeño de estos múltiplos comunes es el número 12, entonces se dice que 12 es el mínimo común múltiplo de 2, 3 y 4 y lo escribimos así: m.c.m. (2, 3,4) = 6.


Existe una manera más práctica y fácil para hallar el m.c.m, sobre todo si se trata de números muy altos.

 

Consiste en descomponer cada número en factores primos y el mínimo común múltiplo (m.c.m)  será igual al producto de los factores comunes y no comunes con su mayor exponente.

 

Veamos como se halla el m.c.m de 2, 4, 3:
 

a) Lo primero que se debe hace es descomponer en factores primos:

 
b) se toma los elementos comunes con su mayor exponente: 22
 
 
 
c) Se toma los elementos no comunes:3

 

 

d) Se multiplican los elementos comunes con su mayor exponente y los no comunes: 22x 3 =2x2x3=12

 
Por lo tanto el m. c. m (2,3, 4)=12
 

 

  Ya conociendo este método, podemos proceder a sumar fracciones de diferente denominador.

 

 

 

              Suma de fracciones con diferente denominador
 
 Cuando tenemos dos o más fracciones con distinto denominador, podemos utilizar el mínimo común múltiplo de los denominadores ( m. c. m. )

 

Ejemplo:

 

  
  Petra tiene una farmacia y sus ingresos mensuales son alrededor de 20.000.00, pero una quinta parte la utiliza para pagar la renta del local y la luz, quinta parte la gasta en materiales y en la sexta parte para pagar a los empleados.
 

   Petra desea saber qué parte de sus ingresos usa en su negocio y qué tanto corresponde a sus ganancias. Para ello Petra necesita hacer una suma de fracciones.

 

 

 
Procedemos de la siguiente manera:

 

1)    Se procede a identificar los denominadores, para saber si tiene igual denominador.

 

2)     Como tienen diferente denominador se busca el m. c. m de los denominadores, para ello descomponemos en factores primos.

 

3)    Se buscan los elementos comunes con su mayor exponente: 22
 
4)    Se buscan los elementos no comunes: 3.5
 
5)    Se multiplican los elementos comunes con su mayor exponente y los no comunes: 22.3.5=2x2x3x5=60
 

6)    Se divide el m.c.m=60 entre los denominadores y el resultado se multiplica por los numeradores.

 

 

 
 

7) Y esos resultados se multiplican por los numeradores

 

 
 
8) Por último, se suman los resultados de los numeradores
 
 
 

Actividad 7