- Ejercicios de Cinemática

Ejercicios de Física de primer año de bachillerato



     Bloque I

1.       Un coche inicia un viaje de 495 Km. a las ocho y media de la mañana con una velocidad media de 90 Km/h ¿A qué hora llegará a su destino?               R/ A las dos de la tarde.

2.       Dos trenes se cruzan perpendicularmente y hacen un recorrido durante cuatro horas, siendo la distancia que los separa al cabo de ese tiempo, de 100 km. Si la velocidad de uno de los trenes es de 20 km/h, calcular la velocidad del segundo tren.      R/  v = 15 km/h

3.       Dos vehículos cuyas velocidades son 10 Km/h y 12 Km/h respectivamente se cruzan perpendicularmente en su camino. Al cabo de seis horas de recorrido, ¿cuál es la distancia que los separa?          R/ 93.72 km.

4.        Dos automóviles que marchan en el mismo sentido, se encuentran a una distancia de 126 Km. Si el más lento va a 42 Km/h, calcular la velocidad del más rápido, sabiendo que le alcanza en seis horas.               R/ v = 63 km/h

5.       Un deportista sale de su casa en bici a las seis de la mañana. Al llegar a un cierto lugar, se le estropea la bici y ha de volver andando. Calcular a qué distancia ocurrió el percance sabiendo que las velocidades de desplazamiento han sido de 30 Km/h en bici y 6 Km/h andando y que llegó a su casa a la una del mediodía.                     R/ 30 km

6.       Un deportista recorre una distancia de 1.000 km, parte en moto y parte en bici. Sabiendo que las velocidades han sido de 120 Km/h en la moto y 20 Km/h en bici, y que el tiempo empleado ha sido de 15 horas calcular los recorridos hechos en moto y en bici.        R/  la motocicleta 840 km y la bici 160 km.

7.       Un observador se halla a 510 m. de una pared. Desde igual distancia del observador y de la pared, se hace un disparo ¿al cabo de cuántos segundos percibirá el observador : a) el sonido directo. b) el eco? Velocidad del sonido 340 m/s.            el sonido directo a 0,75 s, y el del eco a 2,25 s.

8.        Un ladrón roba una bicicleta y huye con ella a 20 km/h. Un ciclista que lo ve, sale del ladrón tres minutos más tarde a 22 Km/h.  ¿Al cabo de cuánto tiempo lo alcanzará?                  R/ 30 minutos.

9.        Calcular la longitud de un tren cuya velocidad es de 72 Km/h y que ha pasado por un puente de 720 m de largo, si desde que penetró la máquina hasta que salió el último vagón  han pasado ¾ de minuto.                            R/  180 metros.

10.   Dos coches salen a su encuentro, uno de Bilbao y otro de Madrid. Sabiendo que la distancia entre ambas capitales es de 443 Km. y que sus velocidades respectivas son 78 Km/h y 62 Km/h y que el coche de Bilbao salió hora y media más tarde, calcular:

a.        Tiempo que tardan en encontrarse

b.       ¿A qué distancia de Bilbao lo hacen?     

 

R/        Tardan en encontrarse 2,5 horas;          a 195 km de Bilbao.

 

 

 

      Bloque II

1.       Una locomotora necesita 10 s. para alcanzar su velocidad normal que es 60 Km/h. Suponiendo que su movimiento es uniformemente acelerado ¿Qué aceleración se le ha comunicado y qué espacio ha recorrido antes de alcanzar la velocidad regular?

2.       Un cuerpo posee una velocidad inicial de 12 m/s y una aceleración de 2 m/s2 ¿Cuánto tiempo tardará en adquirir una velocidad de 144 Km/h?

3.       Un móvil lleva una velocidad de 8 cm/s y recorre una trayectoria rectilínea con movimiento acelerado cuya aceleración es igual a 2 cm/s2. Calcular el tiempo que ha tardado en recorrer 2,10 m.

4.       Un motorista va a 72 Km/h y apretando el acelerador consigue al cabo de 1/3 de minuto, la velocidad de 90 Km/h. Calcular a) su aceleración media. b) Espacio recorrido en ese tiempo.

5.       En ocho segundos, un automóvil que marcha con movimiento acelerado ha conseguido una velocidad de 72 m/s. ¿Qué espacio deberá recorrer para alcanzar una velocidad de 90 m/s?

6.       Se deja correr un cuerpo por un plano inclinado de 18 m. de longitud. La aceleración del móvil es de 4 m/s2; calcular a) Tiempo que  tarda el móvil en recorrer la rampa. b) velocidad que lleva al finalizar el recorrido inclinado.

7.       Dos móviles se dirigen a su encuentro con movimiento uniformemente acelerado desde dos puntos distantes entre sí 180 Km. Si se encuentran a los 9 s de salir y los espacios recorridos por los móviles están en relación de 4 a 5, calcular sus aceleraciones respectivas.

8.       Un avión despega de la pista de un aeropuerto, después de recorrer 1000 m de la misma, con una velocidad de 120 Km/h. Calcular a) la aceleración durante ese trayecto. b) El tiempo que ha tardado en despegar si partió del reposo c) La distancia recorrida en tierra en el último segundo.

9.       Un móvil se mueve con movimiento acelerado. En los segundos 2 y 3  los espacios recorridos son 90 y 100 m respectivamente. Calcular la velocidad inicial del móvil y su aceleración.

10.   Dos cuerpos A y B situados a 2 Km de distancia salen simultáneamente uno en persecución del otro con movimiento acelerado ambos, siendo la aceleración del más lento, el B, de 32 cm/s2. Deben encontrarse a 3,025 Km. de distancia del punto de partida del B. Calcular a) tiempo que tardan en encontrarse, b) aceleración de A. c) Sus velocidades en el momento del encuentro.

11.   Un móvil parte del reposo y de un punto A, con movimiento acelerado cuya aceleración es de 10 m/s2. Tarda en recorrer una distancia BC = 105 cm. un tiempo de 3 segundos  y finalmente llega al punto D. (CD = 55 cm). Calcular a) velocidad del móvil en los puntos B,C y D. b) la distancia AB. c) el tiempo invertido en los recorridos AB y CD.

12.   Un tren que va a 50 Km/h debe reducir su velocidad a 25 Km/h. al pasar por un puente. Si realiza la operación en 4 segundos, ¿Qué camino ha recorrido en ese tiempo?

13.   Al iniciar una cuesta del 5% de pendiente, un coche lleva una velocidad de 72 Km/h. ¿Qué recorrido podrá hacer en la rampa si ha parado el motor?

14.   ¿Qué velocidad llevaba un coche en el momento de frenar si ha circulado 12 m. hasta pararse (a = 30 cm/s2). ¿Cuánto tiempo ha necesitado para parar?

15.   La velocidad de un vehículo es de 108 Km/h y en 5 segundos reduce la velocidad a 72 Km/h. Calcular el tiempo que tardó en pararse.

16.   Un avión recorre 1.200 m. a lo largo de  la pista antes de detenerse cuando aterriza. Suponiendo que su desaceleración es constante y que en el momento de tocar tierra su velocidad era de 100 Km/h. Calcular a) tiempo que tardó en pararse. b) Distancia que recorrió en los diez primeros segundos.

                                   Soluciones

1. a = 1.66 m/s2;  e = 83 m

2. t = 14 s

3. t = 11 s

4.  a= 0.25 m/s2,  e = 450m   

5. e = 450m

6.  t= 3s;  v =12m/s

7.  a1 = 1975 m/s2;  a2 = 2479m/s2

8.  a = 5/9 m/s2;  t = 60s;  e = 33.1m

9.   23.3m/s2;  v0 = 68.3m/s

10.  tb = 1375s;  va = 7.28m/s;   aa = 0.53 cm/s2;  vb = 4.4m/s

11.  vb = 20cm/s;   = 20cm;   vc = 50cm/s; 

        tAB = 2s;    vA = 60cm/s;   tCD = 1 seg.

12.  e = 41.63m

13.  e = 408m

14.  v0 = 2.68m/s;   t = 8.93m/s

15.  t = 15s

16.  t = 86.8s;     e10 = 261.7m

 

    Bloque III

1. Una bombilla cae del techo de un tren que va a 40 Km/h. Calcular el tiempo que tarda en caer si el techo dista del suelo 4 metros.

2. Se suelta un cuerpo sin velocidad inicial. ¿Al cabo de cuánto tiempo su velocidad será de 45 Km/h?

3. Desde lo alto de una torre se deja caer un cuerpo. ¿A qué distancia del suelo tendrá una velocidad igual a la mitad de la que tiene cuando choca contra el suelo?

4. Un cuerpo en caída libre pasa por un punto con una velocidad de 20 cm/s. ¿Cuál será su velocidad cinco segundos después y qué espacio habrá recorrido en ese tiempo?

5. Desde la azotea de un rascacielos de 120 m. de altura se lanza una piedra con velocidad de 5 m/s, hacia abajo. Calcular  a) Tiempo que tarda en llegar al suelo, b) velocidad con que choca contra el suelo.

6. Una piedra cae libremente y pasa por delante de un observador situado a 300 m del suelo. A los dos segundos pasa por delante de otro que está a 200 m del suelo. Calcular: a) altura desde la que cae. b) velocidad con que choca contra el suelo.

7. Si queremos que un cuerpo suba 50 m. verticalmente. ¿Con qué velocidad se deberá lanzar? ¿Cuánto tiempo tardará en  caer de nuevo a tierra?

8. Se dispara verticalmente un proyectil hacia arriba y vuelve al punto de partida al cabo de 10 s. Hallar la velocidad con que se disparó y la altura alcanzada.

9. Lanzamos verticalmente hacia arriba un proyectil con una velocidad de 900 Km/h. Calcular  a) Tiempo que tarda en alcanzar 1 Km. de altura. b) Tiempo que tarda en alcanzar la altura máxima   c) Altura alcanzada.

10. Del techo de un ascensor que dista 2 m del suelo, se  desprende un tornillo en el momento mismo del arranque del ascensor que sube con una velocidad constante de 1 m/s. Calcular a) la distancia a la que estará el tornillo del suelo 0,5 s. después de iniciada la subida. b) Tiempo que tardará en tocar el suelo.

11. Dos proyectiles se lanzan verticalmente hacia arriba con dos segundos de intervalo; el 1º con una velocidad inicial de 50 m/s y el 2º con una velocidad inicial de 80 m/s. Calcular a) Tiempo que pasa hasta que los dos se encuentren a la misma altura. b) A qué altura sucederá el encuentro. c) Velocidad de cada proyectil en ese momento.

RESPUESTAS

1. et = 2000m

2.  vb = 9m/s;   vs = 5m/s

3.  t = 7.87s

4.  t = 6h y 24min.

5.  t = 40s;  e= 1200m

6.  v2 = 45km/h

7.  v1 = 36km/h;   v2 = 27km/h

8.  e = 90m;   va = 18m/s

9.  v1 = 108 km/h;  v2  = 252 km/h   

 

      Bloque IV

1.       Partiendo del reposo un móvil alcanza al cabo de 25 s. una velocidad de 100 m/s. En los 10 primeros s. llevaba un movimiento uniformemente acelerado y en los 15 s. restantes, un movimiento uniforme. Calcular el espacio total recorrido por dicho móvil.

2.       Una canoa invierte 20 minutos para bajar cierto trayecto de un río y 36 minutos para hacer el mismo recorrido en sentido contrario. Calcular las velocidades de la canoa en los dos casos si la longitud del recorrido ha sido 10,8 Km.

3.       Un hombre deja caer una piedra en un pozo de una mina de 250 m. de profundidad. Calcular el tiempo que tardará en oír el ruido de la piedra al chocar contra el fondo (velocidad del sonido 340 m/s )

4.       La velocidad de un remolcador respecto del agua de un río es de 12 Km/h. La velocidad de la corriente es de 1.25 m/s. Calcular el tiempo que durará el viaje de ida y vuelta entre dos ciudades situadas a 33 Km. de distancia en la misma orilla del río.

5.       Dos móviles salen del mismo lugar en el mismo sentido : uno con velocidad constante de 30 m/s y el otro con aceleración constante de 1,5 m/s2. ¿Al cabo de cuanto tiempo volverán a estar juntos? ¿qué recorrido habrá hecho cada uno?

6.       Se cruzan dos trenes en sentido contrario con velocidades de 60 Km/h el primer tren y desconocida la del segundo. Si tardan en cruzarse 6 segundos y la longitud del segundo tren es de 175 m. calcular la velocidad con que se mueve el segundo tren.

7.       Dos ciclistas pasan por una carretera rectilínea con velocidad constante. Cuando van en el mismo sentido, el primero adelanta al segundo 150 m/min.; cuando van en sentidos contrarios, el uno se acerca a otro 350  m. cada veinte segundos. Hallar la velocidad de cada ciclista.

8.       en el instante en que la señal luminosa de tráfico se pone verde, un autobús que ha estado esperando, arranca con una aceleración constante de 1,80 m/s2.En el mismo instante, un camión que viene con una velocidad constante de 9 m/s alcanza y pasa el autobús. Calcular: a) ¿a qué distancia vuelve a alcanzarle el autobús al camión. b) Qué velocidad lleva en ese momento el autobús.

9.       El maquinista de un tren que marcha a 72 Km/h observa que otro tren de 200 m de largo tarda en pasarle 4 segundos. Hallar: a) Velocidad del segundo tren si se mueven ambos en sentidos contrarios. b) Velocidad del segundo tren si se desplazan ambos en el mismo sentido.

 

       Bloque V

1. ¿Cuál es la velocidad angular de un punto dotado de M.C.U. si su período es de 1.4 s?;  ¿cuál es la velocidad tangencial si el radio es de 80 cm?     R/ 4.48 /s,   358.4 cm/s

2. Si un motor cumple 8000 R.P.M., determinar:

a.  ¿Cuál es su velocidad angular?

b.  ¿Cuál es su período?                         R/  837.76 /s,       0.007 s

3. Un móvil dotado de M.C.U. da 280 vueltas en 20 minutos, si la circunferencia que describe es de 80 cm de radio, hallar:

a.  ¿Cuál es su velocidad angular?

b.  ¿Cuál es su velocidad tangencial?

c.  ¿Cuál es la aceleración centrípeta?     R/  1.47 /s,      117.29 cm/s,      171.95 cm/s ²

4. Un cuerpo pesa 0,5 N y está atado al extremo de una cuerda de 1,5 m, da 40 vueltas por minuto. Calcular la fuerza ejercida sobre la cuerda.            R/   1.34 N

5. Calcular la velocidad tangencial de un volante que cumple 3000 R.P.M. si su radio es de 0,8 m.    R/      251.3 m/s

6. Un volante de 20 cm de radio posee una velocidad tangencial de 22,3 m/s. Hallar:

a.  ¿Cuál es su frecuencia?

b.  ¿Cuál es su número de R.P.M.?            R/ 17.75 v/s,   1065 R.P.M.

7. La velocidad tangencial de un punto material situado a 0,6 m del centro de giro es de 15 m/s. Hallar:

a.  ¿Cuál es su velocidad angular?

b.  ¿Cuál es su período?                R/ 25 /s,      0.25 s

8. Una polea cumple 2000 R.P.M., calcular la velocidad angular en grados sobre segundo.       R/   12000 grad/s

9. Calcular la velocidad angular de un volante que da 2000 R.P.M.     R/   209.4 /s

10. ¿Qué es un movimiento de rotación?

11. ¿Cuántas clases de velocidades hay en el movimiento circular uniforme?, ¿cuáles son sus magnitudes?

12. ¿Qué es período y frecuencia en el movimiento circular?

13. Indicar la diferencia entre fuerza centrípeta y centrífuga.

14. ¿Cuál es la causa por la cual una piedra que hacemos girar mediante una cuerda, sale tangencialmente y no radialmente al soltarse la cuerda?

 

         Bloque VI

1.       ¿Cuántos Newton pesa un cuerpo de 70 kg de masa?

2.       ¿Cuántas dinas pesa un objeto de 25.5 g de masa?

3.       Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s2.

4.       ¿Qué masa tiene una persona de 65 kgf de peso en un lugar donde la aceleración de la gravedad es de 9.8 m/s2 y en otro lugar donde la aceleración de la gravedad es de 9.7 m/s2.

5.       Si la gravedad de la Luna es de 1.62 m/s2, calcular el peso de una persona en ella, que en la Tierra es de 80 kgf.

6.       ¿Qué aceleración tiene un cuerpo que pesa 40 kgf, cuando actúa sobre él una fuerza de 50 N?

7.       Un vehículo tiene una masa de 100 kg y actúa sobre él una fuerza de 50kg. ¿Qué aceleración  adquiere.?

8.       Calcule la masa de un objeto al que una fuerza constante de 300 N le induce una aceleración de 50x10-3   m /seg2.

9.       A un cuerpo de 98 kg, le aplico una fuerza de 196 N. ¿Qué aceleración le produce, y cuál será su velocidad al cabo de 1 minuto?

10.   Un patín que pesa 0.5kg adquiere una aceleración de 40 cm/s2. ¿Cuál es el valor de la fuerza en dinas que intervino?

11.   Calcular la masa de un cuerpo que aumenta su velocidad en 1,8 km/h en cada segundo cuando se le aplica una fuerza de 60 kgf.

12.   Un automóvil de 1000 kg de masa marcha a 100 km/h, frena uniformemente y se detiene después de 5 segundos. Calculen la fuerza de frenado.



Página principal

Comments