Matsui Lab

Matsui Lab 

Matsui Laboratory researchers are investigating major issues related to heart failure following myocardial infarction and cardiac hypertrophy.


Hiroko Aoyagi, B.S. (Research Technician)
Monica Y Katz, B.S. (Medical Student)
Naaiko Yorichika, B.A. (Graduate Student)
Takashi Matsui, M.D., Ph.D. (Associate Professor)
Manoj Thakore, B.S. (Graduate Student)
Toshinori Aoyagi, Ph.D. (Research Fellow)

Brendan T. Inouye, B.S. (Medical Student) and Toshinori Aoyagi prepare a sample for ex vivo Langendorff-perfused heart.

Cell Culture by Manoj

Current Research

1. Heart Failure Caused by Myocardial Infarction and Cardiac Hypertrophy

Heart failure is a leading cause of hospitalization and mortality.  We are examining changes in signal transduction pathways caused by myocardial infarction and cardiac hypertrophy, two important precipitants of heart failure.  Specifically, we explore the role of the mechanistic target of rapamycin (mTOR), which is intimately related to the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathway.  

In order to investigate the role of mTOR in the heart, we utilize a variety of in vitro, in vivo, and ex vivo models.  We have examined the effects of cardiac-specific overexpression of mTOR on disease processes related to heart failure.  While the mTOR inhibitor rapamycin can prevent cardiac hypertrophy induced by pathological stress, the role of cardiac mTOR in ventricular function has not been defined.  We reported that cardiac mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy and ischemia-reperfusion injury (ref. 1 and 2).  Others have shown that the inflammatory response plays an important role in the development of heart failure.  Therefore, the anti-inflammatory effect of mTOR activation may inhibit cardiac dysfunction caused by cardiac hypertrophy and myocardial infarction. 

Ex vivo Langendorff perfused heart system 

In vitro gene transfer in adult cardiomyocytes 

2. Heart Failure in Diabetes

Diabetes is an independent risk factor for both heart failure and ischemic heart disease.  After myocardial infarction, heart failure develops at twice the rate in diabetic patients as in non-diabetic patients.  Rising rates of obesity and physical inactivity are leading to increased prevalence of type 2 diabetes, and this is especially evident in Hawaii.  These considerations have encouraged us to search for therapies to reduce cardiac-related mortality in diabetes.  Because of the important role of mTOR in insulin signaling, we are working to determine the role of mTOR in diabetic hearts, and exploring the mTOR signaling pathway as a novel therapeutic target for treatment of heart failure in diabetes.

In vivo model of ischemia-reperfusion injury (ref. 3)


1. Song X, Kusakari Y, Xiao C-Y, Kinsella SD, Rosenberg MA, Scherrer-Crosbie M, Hara K, Rosenzweig A, Matsui T.  mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am J Physiol Cell Physiol. 2010;299(6):C1256-66

2. Aoyagi T, Kusakari Y, Xiao C-Y, Inouye BT, Takahashi M, Scherrer-Crosbie M, Rosenzweig A, Hara K, Matsui T.  Cardiac mTOR protects the heart against ischemia-reperfusion injury.  Am J Physiol Heart Circ Physiol.  2012 May 4. [Epub ahead of print]

3. Kusakari Y, Xiao C-Y, Nathan H, Kinsella SD, Takahashi M, Rosenzweig A, Matsui T.  Myocyte injury along myofibers in left ventricular remodeling after myocardial infarction. Interact CardioVasc Thorac Surg. 2009;9(6):951-955.

  Contact Information


  Dr. Takashi Matsui
  Associate Professor
Department of Anatomy, Biochemistry & Physiology
  Phone: 808-692-1554
  Fax: 808-692-1973