Sympathetic Nervous System

Cross references:   Central Nervous System (CNS)        
Human Endocrine System        Human Endocrinology in General    
Autonomic Nervous System      Parasympathetic Nervous System          
Norepinephrine    MHPG     Catecholamine   

Sympathetic nervous system (Wiki)   
    "The sympathetic nervous system (SNS) is one of the three parts of the autonomic nervous system, along with the enteric and parasympathetic systems. Its general action is to mobilize the body's nervous system fight-or-flight response. It is, however, constantly active at a basal level to maintain homeostasis.[1]"  
Alongside the other two components of the autonomic nervous system, the sympathetic nervous system aids in the control of most of the body's internal organs. Stress—as in the flight-or-fight response—is thought to counteract the parasympathetic system, which generally works to promote maintenance of the body at rest. In truth, the functions of both the parasympathetic and sympathetic nervous systems are not so straightforward, but this is a useful rule of thumb.[1][2]

Tonic GABAergic inhibition of sympathetic preganglionic neurons: a novel substrate for sympathetic control.   
The sympathetic tone is primarily defined by the level of activity of the sympathetic preganglionic neurons. We report a novel inhibitory influence on sympathetic activity, that of tonic GABAergic inhibition which could have a profound global effect on sympathetic outflow. Recording from identified SPNs in the intermediolateral cell column (IML) of rat spinal cord slices, application of the GABA receptor antagonist bicuculline, but not gabazine, elicited a change in voltage that lasted for the duration of application. This response was mediated by a direct effect on SPNs since it persisted in tetrodotoxin and low Ca(2+)/high Mg(2+) and the amplitude of responses were related to Cl(-) concentration in patch solutions. Such tonic inhibitory responses were not observed in interneurons, the other neuronal type in the IML, although ongoing IPSPs were antagonized in these neurons. The effects of bicuculline were enhanced by diazepam but not zolpidem or the GABA modulators THIP and THDOC suggesting a role for alpha5 subunits. PCR using primers for the alpha5 and delta subunits indicated the presence of alpha5, but not delta subunits in the IML. Firing rates of SPNs were enhanced by bicuculline and decreased by diazepam indicating that this tonic inhibition has a profound effect on the excitability of SPNs. These data indicate a novel influence for controlling the activity of SPNs regardless of their function."