Studies on the mechanism of action of
the proto-oncogene Ras in human glioblastoma:
new approaches to brain tumor therapy
utilizing the Ras-inhibitor Salirasib



My PhD studies at Prof. Yoel Kloog's lab focused on the concept of Salirasib as a unique therapeutic drug that protects against malignant glioblastoma.

When I joined the lab it was obvious that Salirasib can efficiently induce dislodgment of active Ras from the cellular membrane, thus reducing levels of active Ras. Treatment with Salirasib was known to cause cell growth inhibition in several cell lines transformed by constitutively activate Ras, including N-Ras-transformed human melanoma cells, human skin cancer cells (merkel cell carcinoma, MCC), and LNCaP and CWR-R1 prostate cancer.

However, the cellular mechanisms mediating Salirasib's mechanism of action remained unrevealed. To decipher the drug's mechanisms of action in cells transformed by constitutively activate Ras, I conducted my studies in human glioblastoma cells that harbor high levels of chronically active Ras due to their highly activated tyrosine kinase receptors.

I employed genome-wide gene expression profiling along with classical biochemical techniques to identify the main core of transcriptional regulation that governs the cellular response to Salirasib in glibolastoma cells. I discovered that Salirasib treatment resulted in a phenomenal gene expression reduction in a number of prominent HIF-1α target genes, among them numerous glycolysis enzymes that known to be positively regulated by HIF-1α. Thus, treatment with Salirasib in glioblastoma cells led to glycolysis shutdown and to severe drop in ATP levels (published in Cancer Research). 

To obtain a global dissection of the transcriptional response to Salirasib, a follow-up study was carried to discover additional transcription factors that participate in the transcriptional response to Salirasib treatment. I identified E2F1 to be a predominant Ras dependent component associated with cell-cycle arrest. Evidently, inhibition of Ras by Salirasib promoted decreased expression of key E2F1-target genes that known to be play a prominent role in cell-cycle progression (published in International Journal of Cancer).

In scope of a later work I focused on cell death events that are induced in gliblastoma cells following Salirasib treatment. My findings revealed that Salirasib severely
inhibited transcription of a major anti-apoptotic regulator, Survivin, and concomitantly activated the apoptotic machinery. These studies indicated that glioblastoma's resistance to apoptosis can be canceled by a single Ras inhibitor which targets both, Survivin, a critical anti-apoptotic regulator, and the intrinsic mitochondrial apoptotic machinery (published in Molecular Cancer Therapeutics).

Complementary research in
collaboration with Prof. Ronit Pinkas-Kramarski, has demonstrated Salirasib's anti-apoptotic effects in cancerous prostate cell lines (published in Biochemical Pharmacology). Altogether, these discoveries provided the first explanation of cell death mediated by Ras inhibition through downregulation of the anti-apoptotic machinery. These results showed that Salirasib can induce critical metabolic change as well as cytostatic effect in human glioblastoma cells. Thus, I have suggested that targeting oncogenic Ras with Salirasib may replace the need of combined inhibition of both, HIF-1α and E2F1, two distinct “addictive oncogenes” of the glioblastoma cells (review article published in Drug Resistance Updates).

In light of the complexity of Ras pathways and their consequent downregulation, I sought to decipher the core molecular response to Ras inhibition
in five cancerous cell lines. By employing gene-expression profiling I identified a distinctive transcriptional response to Salirasib that was common to all tested cancerous cell lines and yet not shared by normal WT-fibroblast. These studies provided a strong support to the conclusion that Salirasib specifically re-regulates defective Ras pathways in human tumor cells. The results (published in Cancer Research), suggested that patients with cancerous tumors over-expressing activated Ras pathways, could be benefit by a treatment with Salirasib. This study provided the first gene expression data of tumors cells react to treatment with Salirasib and the identified transcriptional response has become a potential guideline for assessing the drug administration impact in ongoing clinical studies in human patients.

In light of my thorough studies with the drug, I summarized the beneficial aspects of Salirasib as anti-cancerous drug and have suggested that it should become an influential therapeutic tool for treatment of human malignancies that harbor high activated Ras levels (review article published in Recent Patents on Anti-Cancer Drug Discovery). 

Lastly, due to the strong impact of Salirasib on metabolic pathways of tumorigenic cells, such as glioblastoma and pancreatic tumor cells, I chose to cover the recent discoveries related to metabolic mechanisms of pancreatic tumor cells. I summarized the latest findings in the field including the beneficiary effects of several pre-clinical drugs in a review article published in Cell Death and Disease

 

 

                                                                                                           

             Yarkon river, Tel Aviv