BIOTERRORBIBLE.COM: There is an ever expanding list of potential bio-terror agents that could be used in a bio-terror attack, but anthraxsmallpox and flu are the only “threats” the government appears worried about. These 3 agents will likely be used the same way that they were used in the U.S. government bio-terror war-games entitled Dark Winter and Atlantic Storm

Title: Listeria
Date: 2012
Source: Wikipedia

Listeria is a bacterial genus that contains seven species. Named after the English pioneer of sterile surgery Joseph Lister, the genus received its current name in 1940. Listeria species are Gram-positive bacilli. The major human pathogen in the Listeria genus is L. monocytogenes. It is usually the causative agent of the relatively rare bacterial disease, listeriosis, a serious infection caused by eating food contaminated with the bacteria. The disease affects primarily pregnant women, newborns, adults with weakened immune systems, and the elderly.

Listeriosis is a serious disease for humans; the overt form of the disease has a mortality rate of about 20 percent. The two main clinical manifestations are sepsis and meningitis. Meningitis is often complicated by encephalitis, a pathology that is unusual for bacterial infections. Listeria ivanovii is a pathogen of mammals, specifically ruminants, and has rarely caused listeriosis in humans.

The first documented case of Listeria was in 1924. In the late 1920s, two researchers independently identified Listeria monocyctogenes from animal outbreaks. They proposed the genusListerella in honor of surgeon and early antiseptic advocate Joseph Lister; however, that name was already in use for a slime mold and a protozoan. Eventually, the genus Listeria was proposed and accepted. All species within the Listeria genus are Gram-positive, nonsporeforming, catalase-positive rods. The genus Listeria was classified in the family Corynebacteriaceae through the seventh edition of Bergey’s Manual of Systematic Bacteriology. The 16S rRNA cataloging studies of Stackebrandt, et al. demonstrated that L. monocytogenes is a distinct taxon within the Lactobacillus-Bacillus branch of the bacterial phylogeny constructed by Woese. In 2001, the genus was placed in the newly created Family Listeriaceae. The only other genus in the family is Brochothrix.

The genus Listeria currently contains seven species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. murrayi, L. seeligeri, and L. welshimeri. Listeria dinitrificans, previously thought to be part of the Listeria genus, was reclassified into the new genus Jonesia. Under the microscope, Listeria species appear as small, Gram-positive rods, which are sometimes arranged in short chains. In direct smears, they may be coccoid, so they can be mistaken for streptococci. Longer cells may resemble corynebacteria. Flagella are produced at room temperature, but not at 37 °C. Hemolytic activity on blood agar has been used as a marker to distinguish L. monocytogenes among other Listeria species, but it is not an absolutely definitive criterion. Further biochemical characterization may be necessary to distinguish between the different species of Listeria.

Listeria can be found in soil, which can lead to vegetable contamination. Animals can also be carriers. Listeria has been found in uncooked meats, uncooked vegetables, fruit such ascantaloupes,[4] pasteurized or unpasteurized milk, foods made from milk, and processed foods. Pasteurization and sufficient cooking kill Listeria; however, contamination may occur after cooking and before packaging. For example, meat-processing plants producing ready-to-eat foods, such as hot dogs and deli meats, must follow extensive sanitation policies and procedures to prevent Listeria contamination. Listeria monocytogenes is commonly found in soil, stream water, sewage, plants, and food. Listeria is responsible for listeriosis, a rare but potentially lethal food-borne infection. The case fatality rate for those with a severe form of infection may approach 25%. (Salmonella, in comparison, has a mortality rate estimated at less than 1%.) Although Listeria monocytogenes has low infectivity, it is hardy and can grow in temperatures from 4 °C (39.2 °F) (the temperature of a refrigerator), to 37 °C (98.6 °F), (the body's internal temperature). Listeriosis is a serious illness, and the disease may manifest as meningitis, or affect newborns due to its ability to penetrate the endothelial layer of the placenta.

Pathogenesis: Main article: Listeria monocytogenes

Listeria uses the cellular machinery to move around inside the host cell: It induces directed polymerization of actin by the ActA transmembrane protein, thus pushing the bacterial cell around.

Listeria monocytogenes, for example, encodes virulence genes that are thermoregulated. The expression of virulence factor is optimal at 37°C, and is controlled by a transcriptional activator, PrfA, whose expression is thermoregulated by thePrfA thermoregulator UTR element. At low temperatures, the PrfA transcript is not translated due to structural elements near the ribosome binding site. As the bacteria infect the host, the temperature of the host melts the structure and allows translation initiation for the virulent genes.

The majority of Listeria bacteria are targeted by the immune system before they are able to cause infection. Those that escape the immune system's initial response, however, spread through intracellular mechanisms and are, therefore, guarded against circulating immune factors (AMI).

To invade, Listeria induces macrophage phagocytic uptake by displaying D-galactose in their teichoic acids that are then bound by the macrophage's polysaccharide receptors. Other important adhesins are the internalins. Once phagocytosed, the bacterium is encapsulated by the host cell's acidic phagolysosome organelle. Listeria, however, escapes the phagolysosome by lysing the vacuole's entire membrane with secreted hemolysin,[10] now characterized as the exotoxinlisteriolysin O. The bacteria then replicate inside the host cell's cytoplasm.

Listeria must then navigate to the cell's periphery to spread the infection to other cells. Outside the body, Listeria has flagellar-driven motility, sometimes described as a "tumbling motility". However, at 37 °C, flagella cease to develop and the bacterium instead usurps the host cell's cytoskeleton to move. Listeria, inventively, polymerizes an actin tail or "comet", from actin monomers in the host's cytoplasm  with the promotion of virulence factor ActA. The comet forms in a polar manner  and aids the bacteria's migration to the host cell's outer membrane. Gelsolin, an actin filament severing protein, localizes at the tail of Listeria and accelerates the bacterium's motility. Once at the cell surface, the actin-propelled Listeria pushes against the cell's membrane to form protrusions called filopods[6] or "rockets". The protrusions are guided by the cell's leading edge to contact adjacent cells, which then engulf the listeria rocket and the process is repeated, perpetuating the infection. Once phagocytosed, the bacterium is never again extracellular: it is an intracytoplasmic parasite like Shigella flexneri and Rickettsia.

The Center for Science in the Public Interest has published a list of foods that have sometimes caused outbreaks of Listeria: hot dogs, deli meats, pasteurized or unpasteurized milk, cheeses (particularly soft-ripened cheeses like feta, Brie, Camembert, blue-veined, or Mexican-style queso blanco), raw and cooked poultry, raw meats, ice cream, raw vegetables, and raw and smoked fish.[13] Cantaloupe has been implicated in an outbreak of listeriosis from a farm in Colorado, and the Australian company GMI Food Wholesalers were fined AU$236,000 for providing Listeria monocytogenes-contaminated chicken wraps to the airline Virgin Blue

Preventing listeriosis as a food illness requires effective sanitation of food contact surfaces. Alcohol is an effective topical sanitizer against Listeria. Quaternary ammonium can be used in conjunction with alcohol as a food contact safe sanitizer with increased duration of the sanitizing action. Refrigerated foods in the home should be kept below 4 °C (39.2 °F) to discourage bacterial growth. Preventing listeriosis also can be done by carrying out an effective sanitation of food contact surfaces.

Antibiotics effective against Listeria species include ampicillin, vancomycin (unclear effectiveness), ciprofloxacin, linezolid, and azithromycin.

Listeria is an opportunistic pathogen: It is most prevalent in the elderly, pregnant mothers, and AIDS patients. With improved healthcare leading to a growing elderly population and extended life expectancies for AIDS patients, physicians are more likely to encounter this otherwise-rare infection (only 7 per 1,000,000 healthy people are infected with virulent Listeria each year). Better understanding the cell biology of Listeria infections, including relevant virulence factors, may lead to better treatments for listeriosis and other intracytoplasmic parasite infections. Researchers are now investigating the use of Listeria as a cancer vaccine, taking advantage of its "ability to induce potent innate and adaptive immunity" 
(Wikipedia, 2012)