JAPANESE ENCEPHALITIS

BIOTERRORBIBLE.COM: There is an ever expanding list of potential bio-terror agents that could be used in a bio-terror attack, but anthraxsmallpox and flu are the only “threats” the government appears worried about. These 3 agents will likely be used the same way that they were used in the U.S. government bio-terror war-games entitled Dark Winter and Atlantic Storm

Title: Japanese Encephalitis
Date:
2012
Source:
Wikipedia

Abstract: Japanese encephalitis, previously known as Japanese B encephalitis to distinguish it from von Economo's A encephalitis—is a disease caused by the mosquito-borne Japanese encephalitis virus. The Japanese encephalitis virus is a virus from the family Flaviviridae. Domestic pigs and wild birds (herons) are reservoirs of the virus; transmission to humans may cause severe symptoms. Amongst the most important vectors of this disease are the mosquitoes Culex tritaeniorhynchus and Culex vishnui. This disease is most prevalent in Southeast Asia and the Far East.

Signs and Symptoms
Japanese encephalitis has an incubation period of 5 to 15 days and the vast majority of infections are asymptomatic: only 1 in 250 infections develop into encephalitis.

Severe rigors mark the onset of this disease in humans. Fever, headache and malaise are other non-specific symptoms of this disease which may last for a period of between 1 and 6 days. Signs which develop during the acute encephalitic stage include neck rigidity, cachexia, hemiparesis, convulsions and a raised body temperature between 38 and 41 degrees Celsius. Mental retardation developed from this disease usually leads to coma. Mortality of this disease varies but is generally much higher in children. Transplacental spread has been noted. Life-long neurological defects such as deafness, emotional lability and hemiparesis may occur in those who have had central nervous system involvement. In known cases some effects also include nausea, headache, fever, vomiting and sometimes swelling of the testicles.

Increased microglial activation following JEV infection has been found to influence the outcome of viral pathogenesis. Microglia are the resident immune cells of the central nervous system (CNS) and have a critical role in host defense against invading microorganisms. Activated microglia secrete cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-α), which can cause toxic effects in the brain. Additionally, other soluble factors such as neurotoxins, excitatory neurotransmitters, prostaglandin, reactive oxygen, and nitrogen species are secreted by activated microglia.

In a murine model of JE, it was found that in the hippocampus and the striatum, the number of activated microglia was more than anywhere else in the brain closely followed by that in the thalamus. In the cortex, number of activated microglia was significantly less when compared with other regions of the mouse brain. An overall induction of differential expression of proinflammatory cytokines and chemokines from different brain regions during a progressive JEV infection was also observed.

Although the net effect of the proinflammatory mediators is to kill infectious organisms and infected cells as well as to stimulate the production of molecules that amplify the mounting response to damage, it is also evident that in a nonregenerating organ such as brain, a dysregulated innate immune response would be deleterious. In JE the tight regulation of microglial activation appears to be disturbed, resulting in an autotoxic loop of microglial activation that possibly leads to bystander neuronal damage.

In animals, key signs include infertility and abortion in pigs, neurological disease in horses and systemic signs including fever, lethargy and anorexia.

Evolution
The virus appears to have originated from its ancestral virus in the mid 1500s in the Indonesia-Malaysia region and evolved there into five different genotypes and spread across Asia. The mean evolutionary rate has been estimated to be 4.35×10(-4) (range: 3.4906×10(-4) to 5.303×10(-4)) nucleotides substitutions per site per year.

Virology
The causative agent Japanese encephalitis virus is an enveloped virus of the genus flavivirus and is closely related to the West Nile virus and St. Louis encephalitis virus. The positive sense single stranded RNA genome is packaged in the capsid which is formed by the capsid protein. The outer envelope is formed by envelope (E) protein and is the protective antigen. It aids in entry of the virus to the inside of the cell. The genome also encodes several nonstructural proteins also (NS1,NS2a,NS2b,NS3,N4a,NS4b,NS5). NS1 is produced as secretory form also. NS3 is a putative helicase, and NS5 is the viral polymerase. It has been noted that the Japanese encephalitis virus (JEV) infects the lumen of the endoplasmic reticulum (ER)[4][5] and rapidly accumulates substantial amounts of viral proteins for the JEV.

Japanese Encephalitis is diagnosed by detection of antibodies in serum and CSF (cerebrospinal fluid) by IgM capture ELISA.

Viral antigen can also be shown in tissues by indirect fluorescent antibody staining.

Based on the envelope gene (E) there are five genotypes (I - V). The Muar strain, isolated from patient in Malaya in 1952, is the prototype strain of genotype V. Genotype IV appears to be the ancestral strain and the virus appears to have evolved in the Indonesian-Malayasian region. The first clinical reports date from 1870 but the virus appears to have evolved in the mid 1500s.

Over 60 complete genomes of this virus have been sequenced as of 2010.

Prevention
Infection with JEV confers life-long immunity. All current vaccines are based on the genotype III virus. A formalin-inactivated mouse-brain derived vaccine was first produced in Japan in the 1930s and was validated for use in Taiwan in the 1960s and in Thailand in the 1980s. The widespread use of vaccine and urbanisation has led to control of the disease in Japan, Korea, Taiwan and Singapore. The high cost of the vaccine, which is grown in live mice, means that poorer countries have not been able to afford to give it as part of a routine immunisation programme.

In the UK, the three vaccines used (two of which are unlicensed) which are JE-Vax, Green Cross and IXIARO (licensed). JE-Vax however has subsequentally been removed from market. JE-Vax and Green Cross require three doses given at 0, 7–14 and 28–30 days. The dose is 1ml for children and adult, and 0.5ml for infants under 36 months of age. IXIARO the new vaccine has been produced by Intercell Biomedical Ltd and requires only 2 doses, and is currently licensed in the U.S., Europe (inc UK), Canada and Australia.

The most common adverse effects are redness and pain at the injection site. Uncommonly, an urticarial reaction can develop about four days after injection. Because the vaccine is produced from mouse brain, there is a risk of autoimmune neurological complications of around 1 per million vaccinations. However in the case of IXIARO where the vaccine is not produced in mouse brains but in vitro using cell culture there is little adverse effects compared to the Placebo, the main side effects are headache and myalgia.

Neutralising antibody persists in the circulation for at least two to three years, and perhaps longer. The total duration of protection is unknown, but because there is no firm evidence for protection beyond three years, boosters are recommended every three years for people who remain at risk. Furthermore there is also no data available regarding the interchangeability of other JE vaccines and IXIARO and recommended those previously immunised with other JE vaccines receive Green Cross or JE-Vax or a primary course of IXIARO.

There are a number of new vaccines under development. The mouse-brain derived vaccine is likely to be replaced by a cell-culture derived vaccine that is both safer and cheaper to produce. China licensed a live attenuated vaccine in 1988 and more than 200 million doses have been given; this vaccine is available in Nepal, Sri Lanka, South Korea and India. There is also a new chimeric vaccine based on the yellow fever 17D vaccine that is currently under development.

Treatment
There is no specific treatment for Japanese encephalitis and treatment is supportive; with assistance given for feeding, breathing or seizure control as required. Raised intracranial pressure may be managed with mannitol.[12] There is no transmission from person to person and therefore patients do not need to be isolated.

A breakthrough in the field of Japanese encephalitis therapeutics is the identification of macrophage receptor involvement in the disease severity. A recent report of an Indian group demonstrates the involvement of monocyte and macrophage receptor CLEC5A in severe inflammatory response in JEV infection of brain. This transcriptomic study provides a hypothesis of neuroinflammation and a new lead in development of appropriate therapeutic against Japanese encephalitis.

Epidemiology 
Japanese encephalitis (JE) is the leading cause of viral encephalitis in
Asia, with 30,000–50,000 cases reported annually. Case-fatality rates range from 0.3% to 60% and depends on the population and on age. Rare outbreaks in U.S. territories in Western Pacific have occurred. Residents of rural areas in endemic locations are at highest risk; Japanese encephalitis does not usually occur in urban areas. Countries which have had major epidemics in the past, but which have controlled the disease primarily by vaccination, include China, Korea, Japan, Taiwan and Thailand. Other countries that still have periodic epidemics include Vietnam, Cambodia, Myanmar, India, Nepal, and Malaysia. Japanese encephalitis has been reported on the Torres Strait Islands and two fatal cases were reported in mainland northern Australia in 1998. The spread of the virus in Australia is of particular concern to Australian health officials due to the unplanned introduction of Culex gelidus, a potential vector of the virus, from Asia. However, the current presence on mainland Australia is minimal. Human, cattle and horses are dead-end hosts and disease manifests as fatal encephalitis. Swine acts as amplifying host and has very important role in epidemiology of the disease. Infection in swine is asymptomatic, except in pregnant sows, when abortion and fetal abnormalities are common sequelae. The most important vector is Culex tritaeniorhynchus, which feeds on cattle in preference to humans, it has been proposed that moving swine away from human habitation can divert the mosquito away from humans and swine. The natural host of the Japanese encephalitis virus is bird, not human, and many believe the virus will therefore never be completely eliminated. In November 2011, Japanese encephalitis virus was reported in Culex bitaeniorhynchus in the Republic of Korea.

Recently whole genome microarray research of neuron in JE virus infection has shown that neurons play an important role in their own defense against Japanese encephalitis viral infection. Although this challenges the long-held belief that neurons are immunologically quiescent,an improved understanding of the proinflammatory effects responsible for immune-mediated control of viral infection and neuronal injury during JEV infection is an essential step for developing strategies for limiting the severity of CNS disease.

A number of drugs have been investigated to either reduce viral replication or provide neuroprotection in cell lines or studies upon mice. None are currently advocated in treating human patients.

The use of rosmarinic acid,  and arctigenin, have been shown to be effective in a mouse model of Japanese encephalitis

Curcumin has been shown to impart neuroprotection against JEV infection in an in vitro study. Curcumin possibly acts by decreasing cellular reactive oxygen species level, restoration of cellular membrane integrity, decreasing pro-apoptotic signaling molecules, and modulating cellular levels of stress-related proteins. It has also been shown that the production of infective viral particles from previously infected neuroblastoma cells are reduced, which is achieved by the inhibition of ubiquitin-proteasome system.

Minocycline in mice resulted in marked decreases in the levels of several markers, viral titer, and the level of proinflammatory mediators and also prevents blood brain barrier damage (Wikipedia, 2012).