พันธุศาสตร์ประชากร





       ประชากรหมายถึงกลุ่มของสิ่งมีชีวิตที่อาศัยอยู่รวมกันในพื้นที่หนึ่งๆโดยสมาชิกในประชากรของสิ่งมีชีวิตนั้นสามารถสืบพันธุ์ระหว่างกันได้และให้ ลูกที่ไม่เป็นหมัน ในประชากรหนึ่งๆจะประกอบด้วยสมาชิกที่มียีนควบคุมลักษณะต่างๆจำนวนมาก ยีนทั้งหมดที่มีอยู่ในประชากรในช่วงเวลาหนึ่งเรียกว่ายีนพูล(genepool)ซึ่งประกอบด้วยแอลลีล(allele)ทุกแอลลีลจากทุกยีน

ของสมาชิกทุกตัวในประชากรนั้นดังนั้นพันธุศาสตร์ประชากร เป็นการศึกษาเกี่ยวกับการเปลี่ยนแปลงความถี่ของยีน(gene frequency)หรือการเปลี่ยนแปลงความถี่ของแอลลีล(allele frequency) ที่เป็นองค์ประกอบทางพันธุกรรมของประชากร และปัจจัยที่ทำให้ความถี่ของแอลลีลเปลี่ยนแปลง สิ่งที่น่าสนใจคือเราจะศึกษาความถี่ของแอลลีลในประชากรได้อย่างไร

1.การหาความถี่ของแอลลีลในประชากร

       สิ่งมีชีวิตที่เป็นดิพลอยในแต่ละเซลล์มีจำนวนโครโมโซมเพียง 2 ชุด และแต่ละยีนจะมี 2 แอลลีล ดังนั้นถ้าเรารู้จำนวนจีโนไทป์แต่ละชนิดของประชากร เราจะสามารถหาความถี่ของจีโนไทป์ (genotype frequency) และความถี่ของแอลลีลในประชากรได้จากตัวอย่างดังนี้ในกลุ่มประชากรไม้ดอกชนิดหนึ่งที่ลักษณะสีดอกถูกควบคุมโดย ยีน 2 แอลลีล คือ R ควบคุมลักษณะดอกสีแดงเป็นลักษณะเด่น และ r ควบคุมลักษณะดอกสีขาวซึ่งเป็นลักษณะด้อย ในประชากรไม้ดอก 1,000 ต้น มีดอกสีขาว 40 ต้น และดอกสีแดง 960 ต้น โดยกำหนดให้เป็นดอกสีแดงที่มีจีโนไทป์ RR 640 ต้น และดอกสีแดงมีจีโนไทป์ Rr 320 ต้น ดังแสดงในภาพ

ความถี่ของจีโนไทป์และความถี่ของแอลลีลในประชากรไม้ดอก

ดังนั้น ในประชากรไม้ดอกนี้จะมีความถี่ของแอลลีล R = 0.8 และความถี่ของแอลลีล r = 0.2

2. ทฤษฎีของฮาร์ดี-ไวน์เบิร์ก

       จี เอช ฮาร์ดี ( G.H. Hardy ) และดับเบิลยู ไวน์เบิร์ก ( W. Weinberg ) ได้ศึกษายีนพูลของประชากร และได้แสนอทฤษฎีของฮาร์ดีไวน์เบิร์ก(Hardy–WeinbergTheorem)ขึ้นโดยกล่าวว่าความถี่ของแอลลีลและความถี่ของจีโนไทป์ในยีนพูลของประชากรจะ มีค่าคงที่ในทุกๆรุ่น ถ้าไม่มีปัจจัยบางอย่างมาเกี่ยวข้องเช่น มิวเทชัน การคัดเลือกโดยธรรมชาติ การอพยพ แรนดอมจีเนติกดริฟท์ (random genetic drift) และการถ่ายเทเคลื่อนย้ายยีน ( gene flow) เป็นต้น ซึ่งปัจจัยดังกล่าวก็จะได้ศึกษาในหัวข้อต่อไปเราสามารถทฤษฎีของ ฮาร์ดี-ไวน์เบิร์ก ได้จากตัวอย่างประชากรไม้ดอกในภาพที่ 19-15 พบว่ายีนพูลของประชากรรุ่นพ่อแม่นั้นมีความถี่ของแอลลีล R = 0.8 และ r = 0.2 ถ้าสมาชิกทุกต้นในประชากรมีโอกาสผสมพันธุ์ได้เท่าๆกันแล้วเซลล์สืบพันธุ์เพศ ผู้ และเซลล์สืบพันธุ์เพศเมียที่มีแอลลีล R มีความถี่ = 0.8 และ r มีความถี่ = 0.2 เมื่อมีการรวมกันของเซลล์สืบพันธุ์ ประชากรไม้ดอกในรุ่นลูกจะมีจีโนไทป์ดังแสดงในภาพ

ภาพปริมาณจีโนไทป์ต่าง ๆ ในประชาการที่มีโอกาสผสมพันธุ์ได้เท่ากัน

ดังนั้นความถี่ของจีโนไทป์ของประชากรในรุ่นลูกมีดังนี้

  RR = 0.64            2Rr = 0.32            rr = 0.04

และจากความถี่ของจีโนไทป์ในรุ่นลูกดังกล่าว แสดงว่าความถี่ของแอลลีลในรุ่นลูกมีความถี่ของแอลลีล R = 0.8

และ r = 0.2นั่นคือ ประชากรไม้ดอกในรุ่นลูกยังคงมีความถี่ของจีโนไทป์ และความถี่ของแอลลีลเหมือนประชากรในรุ่นพ่อแม่ หรืออาจกล่าวได้ว่ายีนพูลของประชากรอยู่ในภาวะสมดุลของ ฮาร์ดี-ไวน์เบิร์ก ( Hardy – Weinberg Equilibrium หรือ HWE )

จากตัวอย่างประชากรไม้ดอกสีแดง และสีขาวที่กล่าวมาแล้วนั้น สีของดอกไม้เป็นลักษณะทางพันธุกรรมที่ควบคุมด้วยยีน 2 แอลลีล คือ R และ r จะอธิบายสมการของ ฮาร์ดี-ไวน์เบิร์ก ได้ดังนี้

       กำหนดให้ p คือความถี่ของแอลลีล R = 0.8

       q คือความถี่ของแอลลีล r = 0.2

       และ p + q = 1 นั่นคือ ผลรวมความถี่ของแอลลีลของยีนหนึ่งๆในประชากรมีค่าเท่ากับ 1

       ดังนั้นอาจกล่าวได้ว่า p = 1 – q หรือ q = 1 – p

เมื่อเซลล์สืบพันธุ์รวมตัวกัน ความถี่ของจีโนไทป์ในรุ่นต่อไปจะเป็นไปตามกฎของการคูณคือ

       ความถี่ของจีโนไทป์ RR คือ p2 = ( 0.8 )2 = 0.64

       ความถี่ของจีโนไทป์ rr คือ q2 = ( 0.2 )2 = 0.04

และความถี่ของจีโนไทป์ Rr คือ 2pq = 2(0.8)(0.2) = 0.32

       เมื่อรวมความถี่ของทุกจีโนไทป์จะมีค่าเท่ากับ 1

       นั่นคือ p2 + 2pq + q2 = 1

       จากสมการของฮาร์ดี-ไวน์เบิร์ก สามารถนำมาใช้หาความถี่ของแอลลีล และความถี่ของจีโนไทป์ของยีนพูลในประชากรได้

ดังนั้นเมื่อประชากรอยู่ในสมดุลของฮาร์ดี-ไวน์เบิร์ก ความถี่ของแอลลีล และความถี่ของจีโนไทป์ในยีนพูลของประชากรจะคงที่ ไม่มีการเปลี่ยนแปลงไม่ว่าจะถ่ายทอดพันธุกรรมไปกี่รุ่นก็ตาม หรืออีกนัยหนึ่งคือ ไม่เกิดวิวัฒนาการนั่นเอง

ประชากรจะอยู่ในสมดุลของฮาร์ดี-ไวน์เบิร์กได้ จะต้องมีเงื่อนไขดังนี้

       1. ประชากรมีขนาดใหญ่

       2. ไม่มีการถ่ายเทเคลื่อนย้ายยีนระหว่างกลุ่มประชากร

       3. ไม่เกิดมิวเทชัน ซึ่งจะทำให้เกิดการเปลี่ยนแปลงของแอลลีลในประชากร

       4. สมาชิกทุกตัวมีโอกาสผสมพันธุ์ได้เท่ากัน

       5. ไม่เกิดการคัดเลือกโดยธรรมชาติ โดยสิ่งมีชีวิตทุกตัวมีโอกาสอยู่รอด และประสบความสำเร็จในการสืบพันธุ์ได้เท่าๆกัน

 

3. การประยุกต์ใช้ทฤษฎีของฮาร์ดี-ไวน์เบิร์ก

       เราสามารถนำทฤษฎีของฮาร์ดี-ไวน์เบิร์ก มาใช้ประโยชน์ในการคาดคะเนความถี่ของแอลลีลที่เกี่ยวข้องกับโรคทางพันธุกรรม ในยีนพูลของประชากร เช่นโรคโลหิตจางชนิดซิกเคิลเซลล์ ถ้าทราบจำนวนคนที่เป็นโรคนี้ซึ่งถูกควบคุมด้วยยีนด้อย จะสามารถประมาณจำนวนประชากรที่เป็นพาหะของยีนที่ทำให้เกิดโรคนี้ได้

      ตัวอย่างเช่น ในประชากรทางภาคตะวันออกเฉียงเหนือ จังหวัดหนึ่งมีคนเป็นโรคโลหิตจางชนิดซิกเคิลเซลล์ จำนวน 9 คน จากจำนวนประชากรทั้งหมด 10,000 คน ดังนั้นจะสามารถคาดคะเนความถี่ของแอลลีลที่ทำให้เกิดโรคในประชากรของจังหวัด นี้ได้ โดยกำหนดให้จีโนไทป์ aa แสดงลักษณะของโรคโลหิตจางชนิดซิกเคิลเซลล์

ดังนั้นความถี่ของ aa คือ q2 = 9/10000

                                       = 0.0009

                                     q = 0.3

       แสดงว่าในประชากรแห่งนี้ มีความถี่ของแอลลีลที่ทำให้เกิดโรคโลหิตจางชนิดซิกเคิลเซลล์ เท่ากับ 0.03 หรือประมาณร้อยละ 3 นั่นเอง