Solar Power

 
Photo credit: Alan Radecki
 
There are many kinds of solar power. Some of them are not designed for windy regions, such as northern Arizona. Other kinds of solar power can use a lot of water, which is a concern in desert areas. We will explore this and other issues here.
 
This is a link to an article in the Washington Post that gives a good overview of the water usage issues of concentrating solar power:  http://www.washingtonpost.com/wp-dyn/content/article/2009/06/05/AR2009060501988.html
 
Below are very relevant concerns about solar development that are contained in the Federal Goverment website to be found at the www.solareis.anl.gov link.

Solar Energy Development Environmental Considerations

Utility-scale solar energy environmental considerations include land disturbance/land use impacts, visual impacts, impacts associated with hazardous materials, and potential impacts on water and other resources, depending on the solar technology employed.

Solar power plants reduce the environmental impacts of combustion used in fossil fuel power generation such as green house gas and other air pollution emissions. However, concerns have been raised over land disturbance, visual impacts, and the use of potentially hazardous materials in some systems. These and other concerns associated with solar energy development are discussed below, and will be addressed in the Solar Energy Development Programmatic EIS.

Land Disturbance/Land Use Impacts

All utility-scale solar energy facilities require relatively large areas for solar radiation collection when used to generate electricity at a commercial scale, and the large arrays of solar collectors may interfere with natural sunlight, rainfall, and drainage, which could have a variety of effects on plants and animals. Solar arrays may also create avian perching opportunities that could affect both bird and prey populations. Land disturbance could also affect archeological resources. Solar facilities may interfere with existing land uses, such as grazing. Proper siting decisions can help to avoid land disturbance and land use impacts.

Visual Impacts

Because they are generally large facilities with numerous highly geometric and sometimes highly reflective surfaces, solar energy facilities may create visual impacts; however, being visible is not necessarily the same as being intrusive. Aesthetic issues are by their nature highly subjective. Proper siting decisions can help to avoid aesthetic impacts to the landscape.

Hazardous Materials

Photovoltaic panels may contain hazardous materials, and although they are sealed under normal operating conditions, there is the potential for environmental contamination if they were damaged or improperly disposed upon decommissioning. Concentrating solar power systems may employ liquids such as oils or molten salts that may be hazardous, and present spill risks. In addition, various fluids are commonly used in most industrial facilities, such as hydraulic fluids, coolants, and lubricants. These fluids may in some cases be hazardous, and present a spill-related risk. Proper planning and good maintenance practices can be used to minimize impacts from hazardous materials.

Impacts to Water Resources

Parabolic trough and central tower systems typically use conventional steam plants to generate electricity, which commonly consume water for cooling. In arid settings, the increased water demand could strain available water resources. If the cooling water was contaminated through an accident, pollution of water resources could occur, although the risk would be minimized by good operating practices.

Other Concerns

Concentrating Solar Power (CSP) systems could potentially cause interference with aircraft operations if reflected light beams become misdirected into aircraft pathways. Operation of solar energy facilities, and especially concentrating solar power facilities involves high temperatures that may pose an environmental or safety risk. Like all electrical generating facilities, solar facilities produce electric and magnetic fields. Construction and decommissioning of utility-scale solar energy facilities would involve a variety of possible impacts normally encountered in construction/decommissioning of large-scale industrial facilities. If new electric transmission lines or related facilities were needed to service a new solar energy development, construction, operation, and decommissioning of the transmission facilities could also cause a variety of environmental impacts.

 
Subpages (1): Dry Lake Phase II
ċ
SolarPower_Health_Issues1.doc
(38k)
Arena Webmaster,
Oct 14, 2009, 9:34 AM
Comments