Home‎ > ‎


Q: What the heck IS an anvil?

A: An iron block on which metal is placed to be shaped, originally by hand with a hammer. The blacksmith's anvil is usually of wrought iron, but sometimes of cast iron, with a smooth working surface of hardened steel. A projecting conical beak, or horn, at one end is used for hammering curved pieces of metal. Sometimes the other end has a beak with a rectangular section.

An-vl; Etymology: Middle English anfilt, from Old English; akin to Old High German anafalz anvil; akin to Latin pellere, 'to beat'.

Q: What is the scoring system in anvil shooting competition?

A: Contestants receive one point for every foot of height the anvil flies and lose three points for every foot the anvil lands away from the base.

Q: What is the history of Anvil Shooting?

A: Few people of this day and age have ever heard of an Anvil Shoot, let alone witness the dramatic event. This method of celebration has its roots deeply entwined in our country's history. Anvil Shoots were used to celebrate our nation's Independence, Christmas, the New Year, and Davy Crockett's inauguration into the United States Congress.

On a more practical note, early settlers fired anvils in hopes of making the Indians believe the noise was cannon fire. In the early days, many small towns had no bells or cannons with which to warn or assemble its citizens, but almost all towns had a blacksmith, and he would have anvils. The blacksmith would shoot the anvils to draw the townspeople together.

Q: What propels the anvil into the sky?

A: Black Powder

Q: What is black powder?

A: Black powder was the sole propellant, explosive and pyrotechnic agent for 500 years, from 1300 to 1800, and is still in use for certain applications. It is a unique and fascinating compound chemically, technologically and socially. It was invented as a pyrotechnic substance, then applied as a propellant in firearms, and finally used in engineering and mining. The history of black powder and firearms is treated in Cannon. Some authors make assertions about the history of black powder that are not supported by good evidence, and should not be accepted without better proof. An egregious assertion is that Chinese alchemists experienced a black powder explosion in 220 BCE. There is no evidence of "black powder" in China, and this is about 1200 years before nitrates were first discovered and used, according to more reliable sources. The great Chinese invention was pure nitrates, which they used in pyrotechnic devices, arrow throwers and rockets. The invention of black powder is shrouded in mystery; neither Roger Bacon nor Berthold Schwartz invented it, but high-nitrate powder is probably a European invention. Black powder is not a simple mixture of nitrate, charcoal and sulphur.

The composition of ordinary black powder is 65-75 KNO3, 15-20 C, 10-15 S, which is close to the "stoichiometric" ratio of 84:8:8 that gives the ideal reaction 10KNO3 + 8C + 3S → 2K2CO3 + 3K2SO4 + 6CO2 + 5N2. The heat released is 685 kcal/kg, and the volume expansion factor is 5100. The solid products make the characteristic white smoke. The actual reaction depends on the exact constitution of the powder, how it is prepared, and how it is detonated. The density of gunpowder is about 1.04 g/cc. Black powder is the safest of all explosives. It is insensitive to shock and friction or to electric spark. It must be initiated by heat or flame. Moisture renders black powder useless, and drying does not restore its properties.

The nitrogen in KNO3 has a formal charge of +5, which is reduced to 0 in N2 (in such molecules the formal charge is taken as zero, its average value). The carbon is oxidized from 0 to +4 in CO2 and the carbonate, and the sulphur from 0 to +6. KNO3 is a stable and safe oxidizing agent, not capable of explosion on its own. Black powder is a very stable explosive, insensitive to shock or friction, but sensitive to heat and flame. Like all explosives, it supplies its own oxygen and does not rely on the atmosphere. Note that it is much less efficient as a heat source than carbon and oxygen, which gives 2140 kcal/kg. Its utility lies in its ability to furnish its energy in a very short time, while the carbon will take a good while to burn.

How the powder burns is affected by the grain size. The larger the grain, the slower the powder burns. Fine powder is used for blasting, small grain for firearms, and large grain for cannon. A large variety of black powders are manufactured, and each type has a special designation and use. Black powder is essentially a propellant that burns at a rapid but finite rate determined mainly by its temperature. It is often said that gunpowder will only burn in the open, but explodes when confined. This is much too simple a statement. When in the open, the unburnt powder never becomes hot enough to burn rapidly. When confined, as in a firecracker, the powder quickly becomes hot enough to burn very rapidly, releasing all the energy in a very short time, quickly enough to make a loud report. Pressure does raise the rate of burning, but gunpowder has the least pressure effect of any common explosive, and for this reason is gentle to guns. A thread of gunpowder, wrapped in paper or other covering, burns at a slow and reliable rate, making a delay element or fuse.

Because of its safety and reliability, pressed black powder is used as the propellant in small rockets. A powder for this service has less KNO3 and S, and more C. Its rate of burning can be slowed with chalk, wax or talc. A typical mix is 91 black powder, 9 chalk. No more than 3% of the powder can be stopped by a #20 sieve (0.84 mm) and no less than 60% must be stopped on a #40 sieve (0.42 mm). It is compressed to 1.82-1.89 g/cc, and contains 1.8%-2.5% moisture. This propellant grain is burned in a chamber with a ceramic choke in army signal rockets, which reach 700 ft. altitude. A bursting charge expels 5 white stars that free-fall, or else a red star with parachute, that burns for about 50 sec. and falls at 10-15 ft/s. A model rocket has a pressed black powder propellent grain, and a granular black powder ejection charge. There is a delay element between the two charges, so that the rocket coasts to its maximum altitude before releasing the payload. The fuel for solid-fuel rockets, though called the "powder grain," is a cast plastic cylinder of the fuel material. The word "grain" does, in fact, seem to come from the grains of black powder that are used in a pressed charge, and has been transferred to the whole fuel assembly of any type.