PUBLICATIONS

     

    1.       Douglas, A., de Guise, H., and Repka, J., “The Poincare algebra in rank 3 simple Lie algebras.”  Journal of Mathematical Physics, 54, 023508 (2013); doi: 10.1063/1.4790415

    2.       Douglas, A., Kahrobaei, D., and Repka, J., “Classification of embeddings of abelian extensions of Dn into En+1.” Journal of Pure and Applied Algebra, 217, 1942-1954 (2013).

    3.       Bremner, M.R. and Douglas, A.,The simple non-Lie Malcev algebra as a Lie-Yamaguti algebra,” Journal of Algebra, 328, pp. 269-291 (2012). 

    4.     Douglas, A., Joseph, W.,* and Repka, J., “A classification of the embeddings of the Diamond Lie algebra into sl(3,C) and sp(4,C), and restrictions of irreducible modules,” Journal of Mathematical Physics, 52, 103507 (2011).

    5.       Douglas, A. and Repka, J., “Embeddings of the Euclidean algebra e(3) into sl(4,C) and restriction of irreducible representations of sl(4,C),” Journal of Mathematical Physics, 52, 013504, (2011).

    6.       Douglas, A. and Repka, J., “Indecomposable representations of the Euclidean algebra e(3) from irreducible representations of sl(4,C),” Bulletin of the Australian Mathematical Society, 83, 439-449 (2011). 

    7.       Douglas, A. and Repka, J., “Indecomposable representations of the Euclidean algebra e(3) from irreducible representations of the symplectic algebra sp(4,C),” Journal of Physics: Conf. Ser. 284, 012022 (2011).

    8.       Douglas, A. and de Guise, H., “Some nonunitary, indecomposable representations of the Euclidean algebra,” Journal of Physics A: Mathematical and Theoretical, 43 (2010).

    9.       Kahrobaei, D., Douglas, A. and Bencsath, K. “Some Residually Solvable One-relator Groups,” Bulletin of the Irish Mathematical Society, 65, 23-31 (2010).

    10.    Douglas, A., and Premat, A., “A class of nonunitary, finite dimensional representations of the Euclidean algebra e(2),” Communications in Algebra , 35, 1433-1448 (2007).

    11.    Douglas, A., “On the finite dimensional, indecomposable representations of the Euclidean Algebra e(2) having two generators,” Journal of Mathematical Physics 47(5), 15 pages (2006).

     

    Preprints

     

    12.    Douglas, A., and Repka, J., “The GraviGUT algebra is not a subalgebra of E8, but E8 does contain an Extended GraviGUT algebra,” Preprint, 15 pages.

    13.    Douglas, A., Repka, J., and Joseph, W.,* “The Euclidean algebra in rank 2 classical Lie algebras,” Preprint, 13 pages.

     

    *Note:  W. Joseph is currently a PhD math student at the CUNY Graduate Center.