Special Session: Arithmetic of Hyperelliptic Curves
Michigan State University,
East Lansing, MI
March 1315, 2015
Meeting #1108
Organizer: Tony Shaska Overview Arithmetic geometry is the study of the solutions in k^n of a system of polynomials in n variables with coefficients in a ring k such that k=Z, Q, Z/pZ, or a Dedekind domain. The subject is a combination of algebraic number theory, commutative algebra, and algebraic geometry. During the last 3040 years the subject has seen many developments both theoretical and computational. The goal of this session is to look at some of these problems focused on hyperelliptic and superelliptic curves. Computational aspects of arithmetic geometry and applications in cryptography and coding theory will be encouraged. The session will be a continuation of the NATO Advanced Study Institute on the Arithmetic of Hyperelliptic Curves held in August 2014 organized by this proposer. Topics of the session include, but are not limited to:
 Speakers
Contact: T. Shaska (shaska AT oakland DOT edu) Proceedings: There will be a proceedings volume for this session either from AMS Contemporary Math. series or a special issue of some of the journal in the area. Website:
