d3‏ > ‏Home‏ > ‏

comparative metrics

 

On the shore of comparative metrics- Numerical Prosody


I realize the deep and vast literature on this topic.

 Numerical Prosody  is very little known in Arabic and probably in other languages. It has form and  content.

I think the use of the numerical form facilitates a lot in this field and leads to  new research areas .

 

This subject aims at clarifying the role that the numeric expression plays overcoming language and idiom barriers. Thus, it shows the resemblance, analogy, contrast or variation between poetry meters of different languages in a way that unspecialized people can understand. Then it goes beyond the rhythm of poetry. 


Just compare the first impression one has looking at the left and right sides of the following lines: ( numbers left to right)


uu/--/-||-/-uu/-x …..clamo/res simul / horren/dos || ad / sidera / tollit. …. 11 / 2 2 /2 | | 2/211/22

O|O|OO||O|O|OO|...   radjaz….2 2 1 2 2 2 1 2 2 2 1 2  = 2 2 3 2 2 3

  ا    3 1 2 3 1 2 3 2  = 2 1 1 2 2 1 1 2 2 1 2 ...... جادك الغيث إذا الغيث هما ..... فا علا تن  ف علا تن  فَ علا

da DUM da DUM da DUM da Dum…. Iambic tetrameter  …1 2 1 2 1 2 1 2 

- u – u u u – u – u –…..de va de va ja ga ta m pa te vi bho …2 1 2 1 1 1 2 1 2 1 2  




It is not meant to discuss the principles and rules of meters, though I have mentioned a little of that.
The examples and links  lead to more in  this regard and generate questions. This is an aim in itself, because it encourages further study and elaboration on the subject.

Part 1

Meter is used as a measure in many  aspects starting with distance or length extending to electricity, sound, water flow, heat etc. though the units may differ between a system and another,  The mere existence of a unit has the same implication to all people in all feilds, it means the the existence of a quantity composed of units For the pair of  (Small,short, unaccentual, unstressed) and( Big, long,strong, accentual, stressed)‎.


Here are some examples in Western, Arabic and other prosodies

Arabic :                 ( o - ) , (- o) , (o / ) (u /)  (1 2)

 

https://sites.google.com/site/alarood/r3/Home/tareekh11

 

Urdu :                          ( s  L) , ( - = ) , (~ - )

Persian :                     ( u - )

Turkish :                      ( . - )

. Western :                   ( da DUM ) , (x / ) , ( u s )

Pàëi   :                  ( 1 2 )

 

http://www.metta.lk/english/Prosody/Prosody1.htm#one17

http://www.metta.lk/english/Prosody/index.htm

 

 Indian -Sanskrit (3)  : ( 1 2 ),  ( L H)

http://www.columbia.edu/cu/lweb/digital/collections/cul/texts/ldpd_5949073_001/index.html

     Their Grammatical And Metrical Literature  -    page 140

http://www.al-mostafa.info/data/arabic/depot3/gap.php?file=i000269.pdf

 

Unifying symbols by using  1  and 2 only would be a step to familiarize the poetry meter of a certain language to those who even do not speak that language and will facilitate the study of comperative prosody.

We should carry in mind in this regards that the same ( numerical) meter in two languages has one of two indications:

1- Resemblance when the two prosodies are of the same type.

 Arabic ,Latin and Hindu prosodies are quantitative.Khabab in Arabic and French are syllabic

 

2-Analogy when tow prosodies are different . English is stress bases , Latin is quantitative

 

https://www2.bc.edu/~richarad/lcb/fea/tsurin/compmetrics.html

 

 English is a stress-timed language, French is syllable-timed. Poets in both languages made efforts to import the quantitative metres from classical Greek and Latin. In French these attempts failed in a very short time, and became mere historical curiosities. French poetry remained with the syllabic versification system, which is congenial to a syllable-timed language. English Renaissance poets thought they succeeded in the adaptation of the quantitative metre. But they were doing something that was very different from what they thought they were doing: working in a stress timed language, they based their metre on the more or less regular alternation of stressed and unstressed syllables, and not as they thought, on the regular alternation of longer and shorter syllables. They used the same names and graphic notation for the various metres, but the system was utterly different, and well- suited to the nature of a stress-timed language.

 

Here are some examples of comparison:

 

1- Between Arabic and western prosodies

A line of trochaic heptameter consists of seven trochees in a row:

DUM da / DUM da / DUM da / DUM da / DUM da / DUM da / DUM da

2      1        2         1       2        1         2     1       2        1        2     1      2        1

 

A line of trochaic hexameter consists of six trochees in a row:

DUM da / DUM da / DUM da / DUM da / DUM da / DUM da

2       1        2      1       2        1        2        1        2      1     2     1

 

:Abul’ataheyah says : (words in reversed direction to match left to right scansion) 

ليس كلّ من أراد حاجةً...... ثمّ جدّ في طلابها قضاها

LAY...sa...KOL...lo...MAN...‘a...RA...da...HA...ja...Tan

2.......1......2......1... ..2......1.....2.....1......2....1.....2.....1

 

TOM…ma…JAD...da…FE….ti…..LA…bi….HA….qa…DA.…HA

2.........1......2.....1....2.....1.....2....1....2......1......2..... 2

 

2-Sanskrit  and Arabic

http://www.safarmer.com/Indo-Eurasian/skt-meter.pdf

page - 3

 

d. – – u – – u u – u – –= 2 2 1 2 2 1 1 2 1 2 2 = 4 3 2 1 3 3 2

lab dho da y¯a can dra ma s¯ı va le kha¯

labdhodaya¯ candramas¯ıva lekha¯

‘like the crescent of the risen moon.’ Indravajr¯a (H.2.154)‎.

 

Ahmed Shawqee says:

ما كلّنا ينفعه لسانُهْ ........ في الناس من ينطقه مكانُهْ

 

MA.... KOL… lo……... NA……... YAN…. fa…. ‘o……HO ….li ….SA…... NOH

FIN    NA      si         MAN……….YON…..ti…….qo…..HO….ma….KA…..NOH

2……..2…..….1……..….2……....….2……….1……..1……..2……1……..2…..……2

Arabic…= 2 2 1 2 2 1 1 2 1 2 2 = 4 3 2 1 3 3 2

 

Sanskrit = 2 2 1 2 2 1 1 2 1 2 2 = 4 3 2 1 3 3 2

They are precisely the same.

 

on the right side of the above equation we have gone a step further in grouping numbers  as followed in Arabic Numarical  Prosody  ( ANP) where two consecutive steps  are followed :

1- We add  1 2 = 3  every 1 2 = 3 

2- We may add even numbers.....  2 2 = 4 …… 2 22 = 6 

The priority is for step 1

.

the use of 3= 1 2 in Arabic as a special entity (watad) enabled the understanding of the organic relations between the line syllables as a whole and the characteristics of various meters

 

 - Part 2  Galloping  ( Arabic – Khabab )

 

I chose word galloping for the title because it is the literal translation of the word khabab the name given to an Arabic rhythm type.‎ If  it is called meter, it should be remembered that it is unlike all other Arabic official  meters.


http://en.wikipedia.org/wiki/Dactylic_hexameter :

" By the age of Augustus, poets like Virgil closely adhered to the rules of the meter and approached it in a highly rhetorical way, looking for effects that can be exploited in skilled recitation. For example, the following line from the Aeneid (VIII.596) describes the movement of rushing horses and how "a hoof shakes the crumbling field with a galloping sound":

 

quadrupedante putrem sonitu quatit ungula campu

 

what does this have to do with the Arabic meter ?

This line is made up of five dactyls and a closing spondee

 meter  = 2 11 2 11 2 11 211 211 2 2

this is one form of the Arabic galloping meter .

Because of its length and the fact that it ends with a stressed syllable and so allows for strong rhymes, anapaest can produce a very rolling, galloping feeling verse, and allows for long lines with a great deal of internal complexity.

http://en.wikipedia.org/wiki/Anapaest

 

what does this have to do with the Arabic meter ?

 

The immortal desire of immortals we saw in their faces and sighed.

meter = 11 2 11 2 11 2 11 2 11 2 11 2

this is one of the Arabic galloping meter


from Arabic, we borrow    ( 2 ) = 11   just a matter of convention to represent two short or two unstressed syllables, in contrast with 2 which represents one  . long or stressed syllable. This (2) for 11  is only  applicable in anapest and dactylic)  

This is very similar to the convention of Wikipedia where U= uu           (2) = 11

 

u u s = 11  2 = (2)  2

cv  cv cV   = 11  2  = (2) 2 

  cv cv cvc  =  11 2* = (2) 2*

the convention  ( 2 ) = 11   just a matter of convention ( only in anapest and dactylic) . This restriction is just  normal since  11 exsist only in these two  galloping-khabab meters.

 

so there are 2 meters giving the same impression :

1-The dactylic meter, a repetition of  2  11 = 2  (2) ,” describes the movement of rushing horses and how  a hoof shakes the crumbling field with a galloping sound":

 

2-the anapest meter,  a reprtition of  11 2 = (2)   2 , “ produces a very rolling, galloping feeling verse”

The same word, galloping (Khabab  ) is used in Wikipedia to describe both meters

 

What is common in these two meters ?

  They consist of either stressed/long syllables= twos/ 2  and even numbers of unstressed/short syllables (twos)11 = (2)

-    The anapest ends with a stressed syllable 2 .

 In strict dactylic hexameter, each of these feet would be a dactyl, but classical meter allows for the substitution of a spondee in place of a dactyl in most positions. Specifically, the first four feet can either be dactyls or spondees more or less freely. The fifth foot is frequently a dactyl (around 95% of the time in Homer). The sixth foot is always a spondee, though it may be anceps. Thus the dactylic line most normally looks as follows:”

— U | — U| — U | — U | — u u | — X  “

http://en.wikipedia.org/wiki/Dactylic_hexameter

 

So both meters anapest and mostly the dactylic hexameter end with a stressed syllable

These two points apply in Arabic galloping-khabab meter.

 

In Arabic galloping-khabab meter, All syllables should be 2 = - or (2) =U never having 1 = u alone.

Except for the last syllable, it has to be strong/long - = 2 and never (2)= 11= uu=U. that is syllables have to  be even according to the idioms 2 & (2)

 

To go further in the comparison with Arabic ,

 

What if all syllables are composed of  2  which is even ( with no individual u=1 ) too.= spondee

What if all syllables are composed of  (2)  which is even ( with no individual u=1 ) too.= pyrrhic

 

Since both are somposed of even 2 or (2) with no odd 1=u , both can be classified as khabab in Arabic . But Spondee  2 2  alone is rare whereas pure  pyrrhic (2)   does not practically exist

 Comparison

 

Western : “It is unrealistic to construct a whole, serious poem with spondees, except in languages like Chinese - consequently, spondees mainly occur as variants within an anapaestic structure.

http://en.wikipedia.org/wiki/Spondee

 

Arabic :  But Spondee  2 2 alone is rare

 

Pyrrhics alone are not used to construct an entire poem due to the monotonous effect.[2] Poe observed that many experts rejected it from English metrics and concurred

http://en.wikipedia.org/wiki/Pyrrhic

 

Arabic : whereas pure  pyrrhic uu= U= (2)   does not practically exist

 

Tennyson used pyrrhics and spondees quite frequently, for example, in In Memoriam: "When the blood creeps and the nerves prick." "When the" and "and the" in the second line may be considered as pyrrhics (also analyzable as ionic meter)

http://en.wikipedia.org/wiki/Pyrrhic

 

  

from Arabic, we borrow    ( 2 ) = 11   just a matter of convention to represent two short or two unstressed syllables, in contrast with 2 which represents one  . long or stressed syllable. This (2) for 11  is only  applicable in anapest and dactylic)  

This is very similar to the convention of Wikipedia where U= uu           (2) = 11

 

u u s = 1 1 = (2)  2

cv  cv cV   = 11  2  = (2) 2 

  cv cv cvc  =  11 2* = (2) 2*

the convention  ( 2 ) = 11   just a matter of convention ( only in anapest and dactylic) . This restriction is just  normal since  11 exsist only in these two  galloping-khabab meters.

 

so there are 2 meters giving the same impression :

1-The dactylic meter, a repetition of  2  11 = 2  (2) ,” describes the movement of rushing horses and how  a hoof shakes the crumbling field with a galloping sound":

 

2-the anapest meter,  a reprtition of  11 2 = (2)   2 , “ produces a very rolling, galloping feeling verse”

The same word, galloping (Khabab  ) is used in Wikipedia to describe both meters

 

What is common in these two meters ?

1-      They consist of either stressed/long syllables= twos/ 2  and even numbers of unstressed/short syllables (twos) 11 = (2)

2-      The anapest ends with a stressed syllable 2 .

“ In strict dactylic hexameter, each of these feet would be a dactyl, but classical meter allows for the substitution of a spondee in place of a dactyl in most positions. Specifically, the first four feet can either be dactyls or spondees more or less freely. The fifth foot is frequently a dactyl (around 95% of the time in Homer). The sixth foot is always a spondee, though it may be anceps. Thus the dactylic line most normally looks as follows:”

— U | — U| — U | — U | — u u | — X  “

http://en.wikipedia.org/wiki/Dactylic_hexameter

 

So both meters anapest and mostly the dactylic hexameter end with a stressed syllable

These two points apply in Arabic galloping-khabab meter.

 

In Arabic galloping-khabab meter, All syllables should be 2 = - or (2) =U never having 1 = u alone.

Except for the last syllable, it has to be strong/long - = 2 and never (2)= 11= uu=U. that is syllables have to  be even according to the idioms 2 & (2)

 

To go further in the comparison with Arabic ,

 

What if all syllables are composed of  2  which is even ( with no individual u=1 ) too.= spondee

What if all syllables are composed of  (2)  which is even ( with no individual u=1 ) too.= pyrrhic

 

Since both are somposed of even 2 or (2) with no odd 1=u , both can be classified as khabab in Arabic . But Spondee  2 2  alone is rare whereas pure  pyrrhic (2)   does not practically exist

 Comparison

 

Western : “It is unrealistic to construct a whole, serious poem with spondees, except in languages like Chinese - consequently, spondees mainly occur as variants within an anapaestic structure.

http://en.wikipedia.org/wiki/Spondee

 

Arabic :  But  2 2  ( spondee)  alone is rare

 

Pyrrhics alone are not used to construct an entire poem due to the monotonous effect.[2] Poe observed that many experts rejected it from English metrics and concurred

http://en.wikipedia.org/wiki/Pyrrhic

 

Arabic : whereas pure (2) (2)   pyrrhic uu= U= (2)   does not practically exist

 

Tennyson used pyrrhics and spondees quite frequently, for example, in In Memoriam: "When the blood creeps and the nerves prick." "When the" and "and the" in the second line may be considered as pyrrhics (also analyzable as ionic meter)

http://en.wikipedia.org/wiki/Pyrrhic

 

 

On the rare spondee- Khabab - -  22 is this Arabic children song . every line is composed of two hemistichs

I know how difficult it is for some body used to one type of rhythm to  feel the other type of rhythm.

YouTube Video




I hope the simplicity of this song will facilitate the feeling of the quantitative syllabic Arabic spondee-Khabab rhythm

The children repeat the chorus:


tik.......tik.......tik.......yam.......mis.......lay.......ma.......n

CvC...CvC....CvC....CvC......CVC.......CvC.....Cvv......C

‎-‎...........‎-.........‎-‎..........‎-‎...........‎-‎............‎-‎...........‎-‎.......C

‎2*‎.........‎2*‎......‎2*‎........2*‎‎..........‎2*‎...........‎2*‎‎........‎2.......C


   

Arabic Khabab-galloping is composed  of long syllables 2  and couples of short syllables uu=11=(2). It does not allow any single short 1=u.

The resemblance or Analogy with Arabic covers  any of the following feet, and any mixture  of them in any languge:

Spondee  DUM DUM = 2 2  , anapest = d a d a DUM = 1 1 2 = (2) 2 . Dactylic = DUM da da = 2 11 = 2 (2)

Pyrrhic = (2)

 

Khabab does not accept  Iamic = da DUM = 1 2 , trochaic = Dum da = 2 1 since each of them contains a single u=1.

But should there be a language that accepts mixing of trochaic followed by iambic = Dum da da Dum = 2 1 1 2 = 2(2) 2, then that resembles Arabic khabab.

Iambic = 12 = 3 is called watad in Arabic , The rule is no watad in Khabab.

 

Part 3 : oral and visual

 

The brain receives visual and auditory input and distinguishes and categorizes them. If  the numeric representation of meter have a real indication, then the visual representation  of the numerical equivalent of a meter and the auditory effect of that meter should have something in common.

The dactylic and anapest have been described to have the same galloping effect. Let us represent the numerical form  both graphically. the following graphs shows  dactylic tetrameter and anapest tetrameter

 

how does spondee tetrameter look like ?




 

The linear graph of the spondee is just a straight line.

No doubt,  the graphs  show that both  the dactylic and anapestic meters are more vivid than the spondaic which sounds and looks monotonous . That goes well in accordance to limiting the galloping sense to the dactylic and anapestic meters. And to deciding that  It is unrealistic to construct a whole, serious poem with spondees". The same applies to pyrrhic meter.

  Consider the following line,

http://www.poetrymagnumopus.com/index.php?showtopic=2358&view=findpost&p=13689


 Writing in meter's a cinch when you know how


 WRIting / in ME / ter's a CINCH / {when you / KNOW HOW} / / trochee / iamb / anapest / {pyrrhic / spondee} /

The numeric  equivalent =  2 1/ 1 2/ 1 1 2 / 11/ 2 2

Taking off feet boundaries = 2 1 1 2 1 1 2 1 1 2 2  = 2 (2) 2 (2) 2 (2) 2 2

This is an interesting outcome

1-    Notice the recurrence of pattern 2 1 1 = 2 (2)

2-    Accordingly reassign  new  boundaries between feet = 2 (2) / 2(2) / 2(2) / 2 2

The first three feet   are dactyls the fourth is spondee. Is that the same ?

Let us consider the line,

quadrupedante putrem sonitu quatit ungula campum

http://en.wikipedia.org/wiki/Dactylic_hexameter

 

what does this have to do with the Arabic meter ?

This line is made up of five dactyls and a closing spondee

A - meter  =   2 11/ 2 11/ 2 11/ 211/ 211/ 2 2

                 =  dactyl / dactyl / dactyl / dactyl / dactyl / spondee


B - new feet boundaries = 2 1/ 1 2/ 1 1 2 / 1 1 2/ 1 1 2 /11 / 2 2  

                                        = trochee / iamb / anapest / anapest / anapest /pyrrhic / spondee


C- new feet boundaries =  2 1 1/ 2 1 1/ 2 1/  1 2 / 1 1 2 / 1 1/ 2  2

                                          = dactyl / dactyl/ trochee/iamb / anapestpyrrhic/spondee


D- new feet boundaries = - 2 1/ 1 2 1/ 1 2 1 / 1 2/ 11 / 2 2

                                         = trochee / amphibrach / amphibrach / amphibrach / iamb / pyrrhic / spondee

 


 Are A , B , C and D the same ? 

as far as the description of meter  in terms of  the two symbols ( da & DUM ) or ( 1 & 2 ) regardless of feet and their boundaries,   I think the answer is yes.

If I'm  right, then are feet and their boundaries real? , or just  idiomatic tools to describe the syllables and their arrangement  rules. Can the same description be achieved by another means ? Is this numbering description capable of doing so?

If  the answer is yes or a probable yes,  this will be the start of contemplating the investigation of the content and indication of numbers in this regards.  This is where and when numerical prosody really starts.

 

Introducing numerical approach to Arabic metrics, was generally neither welcome nor taken seriously. But after years of introducing it in many forums , the limited number who  studied it know its value . And they know the wealth they have. They know the general few rules that control Arabic prosody .different meters, feet, detailed description are but manifestations of those rules.

Thus came the differentiation between prosody and the science of prosody. Prosody is one’s feeling of meters, and describing them each at a time. Feeling in itself means some sort of being aware of prosody/rhythm. That is the case of the child when reacting to mother’s singing.

 

The science of prosody / metrics is the awareness of the necessity of the existence of general pan-meter rules that control all meters, and seeking to define them most probably in in mathematical abstract terms.

 Does this form ( anapest / iamb ) exisit in English ?

It does,

 

 

 and the fourth an anapest followed by an iamb

In the howling storm,= da da DUM da DUM = 1 1 2 1 2

 

This occurrence is occasional. That is, no meter is formed totally of the repetition of the combination of these two feet.

In Arabic, This combination forms one foot. 1 1 2 1 2 = 1 1 2 3  ( 1 2 in iamb =3 )

The repetition six times of this combination forms the kamil meter. Let us consider these two flowers :






What is the implication ?


Wouldn't it be justifiable to speculate about nature having some sort of  poetry/rhythm  ?


I think it is worth speculating  about that and to seek an explanation that may go deeper to consider the relation between Man an nature.

  

We May represent anapest by two way  da da DUM = 1 1 2   or da  (daDUM ) =1 (12) = 1 3



Meter Clock

 

T he Mathematical and scientific brilliance of Al_khalil shines in his circles. Those circles which were described as a mere anecdote.

They represent his comprehensive thinking that defines the two basic elements of Arabic syllables namely sabab (even) = 2 and watid (odd) = 3 and the sabab (even) conglomerates 2        4=22        6=222, then he constructs out of the alternations and rotations of these basic elements the possible forms of all totally used, Partially used  and unused meters (templates – buhur ) .

He divides different meters in five circles each one having the same types of even basic elements.

 

Putting these circles together in what I called meter-clock reveals the characteristics of each radius (axis). Thus we have two coordinates of each part that defines most of the characteristics of every part. Since 3 does not change, we mainly mean the even numbers which are subject to change ( zihaf – flaws).

These circles describe the overall Arabic prosody when they fit in a twelve- arm clock-like figure.

The degree of awareness of  the importance and implications of this clock defines the difference between Arabic prosody/meters and the science of Arabic prosody/meters.

 

The feeling of the rhythm and the ability to  describe its forms is prosody.

The knowledge of the controlling common rules of the rhythm in all its forms is the science of prosody. The minimum degree for any science oriented effort is the awareness of the necessity of the existence of such common rules. Seeking to deduce these common  rules from the partial feet rules is an advanced step. Those who read Arabic can see more about this on :

https://sites.google.com/site/alarood/r3/Home/-qabas 

The understanding of this clock within the above concept generates a flow of fruitful thinking that leads to very fantastic horizons in meters and beyond that in other knowledge and life aspects.

  I discovered that English basic meters fit best within a similar frame. How important and generative is that ?

I really do not know. But I know that this whole approach was not welcome by Arabic scholars in general. It was badly received in one English forum.

It needs an open mind that crosses the barriers of feet boundaries to see the overall picture.

In the clock on the right,  the thin line represents da = 1         the thick line represents DUM = 2






 


------------------------------------------


Is it  possible to seek a relation between architecture and poetry ?


2 3 2 2 3 2 = 2 1 2 2 2 1 2 2 =  2 1 / 2 2 / 2 1/ 2 2 = trochee / spondee /  trochee / spondee

 


http://www.norfolkchurches.co.uk/cley/images/DSCF5581.JPG



For more on architecture amd poetry meters   :  https://sites.google.com/site/aroodwasseem/


*****



Self explanatory comparison



http://itp.nyu.edu/~jsh434/?p=819 






كلا وباري طوال الهدب والحور       ما قل  حبّيك من  بعد ومن  غير

 

يَري

غ

ومن

دن

بع

كمن

بي

لحبْ

قلْ

ما

 

وري

ح

بولْ

هدْ

لل

طوا

ري

وبا

لا

كلْ

3

1

3

2

2

3

2

3

2

2

 

3

1

3

2

2

3

2

3

2

2

B3

1

3

2

2

3

2

3

2

2

 

3

1

3

2

2

3

2

3

2

2

B3

1

3

4

3

2

3

4

 

3

1

3

4

3

2

3

4

 




I found this content which looks so much like using numerals to represent syllables early in Western meter representation. This representation may be used to find relation between poetry and Fibonacci Numbers

http://www.maths.sur...Art.html#poetry

For one time unit, we have only one short syllable to say: S = 1 way
For two time units, we can have two short or one long syllable: SS and L = 2 ways
For three units, we can have: SSS, SL or LS = 3 ways
Any guesses for lines of 4 time units? Four would seem reasonable - but wrong! It's five!
SSSS, SSL, SLS, LSS and LL;
the general answer is that lines that take n time units to say can be formed in Fib(n) ways.

This was noticed by Acarya Hemacandra about 1150 AD or 70 years before Fibonacci published his first edition of Liber Abaci in 1202! 


I conclude with these excerpts from this valuable subject :

THE NEURAL LYRE: POETIC METER, THE BRAIN, AND TIME

http://joelorr.squarespace.com/the-neural-lyre-poetic-meter-t/

 

To sum up the general argument of this essay: metered poetry is a cultural universal, and its salient feature, the three-second LINE, is tuned to the three-second present moment of the auditory information-processing system.  By means of metrical variation, the musical and pictorial powers of the right brain are enlisted by meter to cooperate with the linguistic powers of the left; and by auditory driving effects, the lower levels of the nervous system are stimulated in such a way as to reinforce the cognitive functions of the poem, to improve the memory, and to promote physiological and social harmony.  Metered poetry may play an important part in developing our more subtle understandings of time, and may thus act as a technique to concentrate and reinforce our uniquely human tendency to make sense of the world in terms of values like truth, beauty, and goodness.  Meter breaks the confinement of linguistic expression and appreciation within two small regions of the left temporal lobe and brings to bear the energies of the whole brain.25 

 

The implications for education are very important.  If we wish to develop the full powers of the minds of the young, early and continuous exposure to the best metered verse would be essential; for the higher human values, the cognitive abilities of generalization and pattern-recognition, the positive emotions such as love and peacefulness, and even a sophisticated sense of time and timing, are all developed by poetry.  Furthermore, our ethnocentric bias may be partly overcome by the study of poetry in other languages, and the recognition if the underlying universals in poetic meter.  Indeed, the pernicious custom of translating foreign metered verse originals into free verse may already have done some harm; it involves an essentially arrogant assumption of western modernist superiority over the general "vulgar" human love of regular verse.

***

Is


One last remark

The expression ”metered verse” implies the  repetition of meter elements i.e. feet, ( rhythm measuring units)   in poetry and other  aspects as well.

 Then -  aware of language coincidence - how true is this:  Universe = uni – verse ? Just one whole verse? with the same " universal constant/constants " in all feilds.

 

This subject is relevent : https://sites.google.com/site/alarood/r3/Home/a-guide-to-numerical-prosody



About Numerical Prosody      




 
 

العروض الرقمي - على شاطئ علم  العروض المقارن


أعرف  أن  جهدا كبيرا وعميقا قد بذل في هذا المجال والكتابة عنه

  العروض الرقمي    محدود الانتشار جدا في العالم العربي وفي كل مكان. وهو ذو  شكل ومضمون

واعتقد أنه شكلا يفيد في هذا المجال

يهدف هذا الموضوع إلى توضيح الدور الذي يؤديه  التعبير الرقمي عن الوزن في التغلب على حواجز اللغات  والمصطلحات. وهكذا فهو يساعد على توضيح التشابه والتناظر والتباين والتقاطع بين أعاريض اللغات بطريقة تسهل على غير المختص مقاربة االموضوع.

 

وحسب القارئ العادي مقارنة انطباعه المبدئي عندما يقارن بين  تعبيري الوزن على شمال ويمين الأسطر التالية.

u/--/-||-/-uu/-x …..clamo/res simul / horren/dos || ad / sidera / tollit. …. 21/22/2 | | 2/211/22- 

O|O|OO||O|O|OO|...   radjaz….2 2 1 2 2 2 1 2 2 2 1 2  = 2 2 3 2 2 3

 2 3 2 2 3 2 =   2  O|OO||O|O|OO|...   ramal ……. 2 1 2 2 2 1 2  

OO||O|O|OO|...  hazadj……..3 2 2 3 2 2

da DUM da DUM da DUM da Dum…. Iambic tetrameter  …1 2 1 2 1 2 1 2 

 u – u u u – u – u –…..de va de va ja ga ta¯m pa te vi bho …2 1 2 1 1 1 2 1 2 1 2 

 


يهدف هذا الموضوع إلى إظهار دور التعبير الرقمي شكلا  في تخطي اللغات والمصطلحات وكشف ما بين بعض أوزان  الشعر  في بعض اللغات من تشابه  أو تناظر أو تواز  او تقاطع أو تباين باسلوب يستطيع غير المتخصص أن  يفهمه.  وهو مبدئيا  لا يهدف إلى دراسة خصائص هذه  الأوزان، وإن كنت فيه أتعرض لبعض خصائص بعضها لماما. وفي الأمثلة التي قدمتها مع روابطها ما يقود إلى المزيد الذي تضيق طبيعة الموضوع عن استيعابه، كما أنه يولد الكثير من التساؤلات، وهذا أحد أهدافه فهو يشجع المزيد من البحث والدراسة.

 

الجزء الأول

 

ثمة مقياس  أو متر في عدة مجالات بدء من المسافة والطول وشمولا للكهرباء والصوت وتدفق الماء والحرارة  إلخ، ومع أن وحدة القياس قد تختلف بين نظام وآخر إلا أن  مجرد وجود وحدة قياس يحمل دلالة يتفق عليها جميع الناس في كافة المجالات، , وهي وجود كميات مكونة من  وحدات. يرمز لزوجي المقطعين ( الصغير أو القصير أو غير المنبور أو الضعيف) ثم ( الكبير أو الطويل أو المنبور أو القوي) . فيما يلي أمثلة على هذه  الأزواج  من الوحدات في الأعاريض الغربية والعروض العربي وبعض الأعاريض الأخرى :

العربية : ( ه - ) ، ( - ه ) ، ( ه / ) ، ( ب / ) ، ( 1 2 )

الأوردية :  ( L s ) ، ( - = ) ، (  ~ - )

الفارسية : (ب -)

التركية : ( . - )

بايي  :  ( 1 2 )

الهندية - السنسكريتيه  : ( 1 2)

 

إن من شأن  توحيد الرموز بالرمزين 1 و 2 أن يشكل خطوة لجعل عروض لغة ما مألوفا لدى حتى أؤلئك الذين لا يتقنون تلك اللغة ، كما أنه يسهل دراسة العروض المقارن.

أ1- التشابه عندما تنتمي اللغتان  لنفس الصنف فالعربية واللاتينية والهندية تنتمي كما أعريضها إلى الصنف الكمي

 الخبب في العربية كما  العروض الفرنسي ينتميان للصنف المقطعي السببي )

 

أ2- التناظر  عندما تنتمي  لغتنان إلى صنفين مختلفين. فالإنجليزية لغة نبرية،  وأعاريض الشعر الروماني القديم واليوناني والعربي كَميّة

 

 

وفيما يلي بعض أمثلة المقارنة:

 

ا1 - بين  االعروض العربي وبعض الأعاريض الغربية

يتكون البيت من وزن (التركيك - السباعي) من سبعة وحدات من 2 1 (الوتد المفروق)

 

دنْ    د    دن    د    دن    د    دن    د     دن    د    دن    د    دن

أ2      1   2    1     2    1     2    1     2   1    2     1    2     1

 

يتكون البيت من وزن (التركيك - السبداسي) من ستة وحدات من 2 1

  دنْ    د    دن    د    دن    د    دن    د    دن    د    دن    د  

أ 2     1   2   1     2    1   2    1     2     1    2     1      

 

يقول أبو العتاهية :

 

ليس كلّ من أراد حاجةً...... ثمّ جدّ في طلابها قضاها

 

ليْ   سَ   كُلْ   لُ  منْ    أ     را    دَ   حا    جـ    تنْ

أ2    1    2    1    2   1    2     1    2     1       2    1

 

ثُمْ    مَ    جدْ   دَ     في    طِ    لا    بـِ   ـها     قَ   ضا    ها

أ2    1    2        ه    1    2   1    2     1     2      1    2      2

 

2 - السنسكريتية والعربية

 

أ - - ب - - ب ب - ب - - =  2 2 1 2 2 1 1 2 1 2 2 =4 3 2 1 3 3 2  

 

يقول أحمد شوقي

 

ما كلّنا ينفعه لسانُهْ ........ في الناس من ينطقه مكانُهْ

 

ما       كلْ       لُ     نا      ينْ      فـَ     عـُ     هو     لِـ      سا      نـُ      هو

فنْ      نا        سِ     منْ    يُنْ     طِ      قـُ     هو     مـَ      كا      نـُ       هو

أ2     2          1      2      2    1       1      2      1      2     1        2

 

الوزن العربي = 2 2 1 2 2 1 1 2 1 2 2  = 4 3 2 1 3  3  2

السنسكريتي  =  2 2 1 2 2 1 1 2 1 2 2  = 4 3 2 1 3  3  2

 

متطابقان

 

في الجانب الأيسر من  المعادلة اعلاه، تقدمنا خطوى في التجميع

 

أ- جمعنا مل 1 2 = 3

ب- لنا أن نجمع  الأرقام  الزوجية  ....2 2 = 4   ......2 2 2 = 6

 

والأولوية في ذلك للخطوة رقم أ

الرمز للوتد بالرقم 3 = 1 2  كوحدة مستقلة في العربية  لعب  دورا رئيسا في فهم العلاقات  العضوية بين مقاطع البيت ككل وخصائص البحور المختلفة

 

الإنجليزية لغة نبرية، والفرنسية لغة مقطعية، وقد بذل شعراء اللغتين جهدهم لاستيراد الميزان الكمي من اللغتين اليونانية الكلاسيكية واللاتينية. ولم يمض طويل وقت حتى اتضح فشل هذه المحاولات في الفرنسية، ولم يبق منها إلا طرفتها التاريخية. وبقي الشعر الفرنسي قائما على نظام مقطعي متجانس مع تلك اللغة ذات التوقيت المقطعي.
أما الشعراء الإنجليز في عصر النهضة فقد ظنوا أنهم نجحوا في تكييف الميزان الكمي، ولكن ما كانوا يقومون به كان مختلفا عما ظنوا أنهم يقومون به، ونظرا لأنهم كانوا يتناولون لغة نبرية فقد قعّدوا ميزانهم على التبادل المنتظمبشكل أو آخرللمقاطع المنبورة وغير المنبورة، وليس كما وهموه تبادلا بين المقطع القصيرة 1 والطويلة
لقد استعملوا نفس الأسماء والرموز لكافة الأوزان ولكن النظام العروضي كان مختلفا كليا، فقد كان نبريا مناسبا للغة قائمة على النبر.

الجزء الثانيالخبب

 

اخترت كلمة   Galloping عنوانا للموضوع لأنها الترجمة الحرفية لكلمة خبب، وهو اسم وزن عربي.

كان التزام الشعراء مثل فيرجل كبيرا في زمن أوغسطس بقواعد الوزن وقاربوها بمهارة تبرز اثر الإنشاد. فهذا البيت مثلا يصف حركة الخيول المندفعة بشكل يصور حوافرها وهي تهز الارض بصوت خببي

ما علاقة هذا بالخبب العربي ؟

 وزن البيت = 2 1 1  2 1 1 2 1 1 2 1 1 2 1 1 2

أي = 2 (2) 2 (2) 2 (2) 2  (2)

وهذا أحد  اشكال وزن  الخبب العربي

نظرا لطول هذا البحر وانتهائه بالرقم 2 وبالتالي تمكينه لانتهاء البيت بقافية قوية فإن  تكرار هذه التركيب 1 1 2 يعطي شعورا جد قوي بخببية الشعر ويسمح بأبيات طويلة  [ تدفق شعري] ذات قدر كبير من التعقيد الداخلي

ما علاقة هذا بالخبب العربي ؟

الحديث هنا عن وزن هذا  البيت

 الوزن = 11 2 11 2 11 2 11 2 11  2  11 2

وهو = (2) 2  (2) 2  (2) 2   (2) 2   (2) 2   (2) 2 

وهذا أحد  اشكال وزن  الخبب العربي

 

http://joelorr.squarespace.com/the-neural-lyre-poetic-meter-t/

وخلاصة هذا المقال أن الشعر الموزون [ والأغلب أنه  يقصد العمودي لإشارته إلى مدة  ثلاث ثوان للبيت ]  معلم ثقافي عالمي، وأن معلمه البارز وهو البيت الذي يستغرق ثلاث ثوان متناغم  مع  آنية استحضار الجهاز السمعي البالغة ثلاث ثوان.

يؤدي ثراء الوزن إلى دفع الملكات الموسيقية والتصويرية للنصف الأيمن من الدماغ إلى للتعاون مع القدرات  اللغوية للنصف الأيسر.

وتحفز التأثيرات السمعية المستويات الدنيا من الجهاز العصبي بطريقة تقوي الوظيفة المعرفية للشعر، وتحسين الذاكرة وزيادة الانسجام النفسي والاجتماعي.

 وقد يلعب الشعر دورا  مهما في تنمية  فهمنا للوقت وبالتالي قد يعمل على تكثيف وتركبز ما نتفرد به كبشر من تعبير عن  معنى الكون بدلالة القيم كالحقيقة والجمال والخير.

 يؤدي الوزن إلى تحرير احتمار منطقتين صغيرتين في الفص الأيسر للذوق والتعبير اللغوي من الدماغ ليشمل طاقات الدماغ جميعا.

 وإن مضمونه في المجال التربوي جد هام. فإذا أردنا  تطوير قدرات الدماغ لدى الناشئة، فإن من الطروري أن  نجعلهم يتعاطون مع عيون الشعر.

 يعنل الشعر على الارتقاء بالقيم  الإنسانية وقدرات التعميم المعرفية وتمييز الأنماط والعواطف الإيجابية  وحتى الإحساس المتقدم  بالتوقيت.

 وأكثر من  ذلك فإن دراسة شعر اللغات الأخرى وما يسود شعر البشر عامة من ثوابت الوزن  يحد من غلواء العنصرية التي يولدها انحياز التقوقع على الذات

قد يكون الاعتياد الخبيث لترجمة  الشعر الموزون من اللغات الأجنبية  إلى شعر مرسل قد أدى إلى بعض الضرر. فهو لا يخلو من مضمون الافتراض المتعجرف للحداثيين الغربيين بالتفوق على ما يرونه الولع البشري " المبتذل " للشعر العمودي.  


 

Comments