Appendix 24. Porcine ABO gene

Using the degenerate oligonucleotide primers, we amplified the partial sequence from the pig ABO gene. We later used the sequence information to clone the pig ABO gene cDNA. The pig gene encoded a functional enzyme with A transferase activity. Porcine A and O phenotypes were already known. Therefore, we determined the A/O phenotype of the salivary gland tissues of pigs, and isolated genomic DNA from the pig tissues exhibiting A and O phenotypes. DNA was cleaved with restriction enzymes, electrophoresed, and Southern transferred onto a nylon membrane. After fixation, the filter was hybridized with the radio-labeled pig A transferase gene fragment. The results of hybridization demonstrated that genomic DNA derived from the pig with the O phenotype lacked the homologous sequence. This is in contrast to the human O alleles, which either possess a single nucleotide deletion that causes a frameshift or amino acid substitutions that nullify the enzymatic activity. Apparently, the pig O allele seems to be lacking most, if not all, of the structural gene encoding the glycosyltransferase.

Appendix 25. A variety of methods for the ABO genotyping

Appendix 01.Discovery of the ABO blood group system 

01. ABO Blood Group System


Keywords

Histo-blood group ABO system, blood group ABO system, ABO system, AB0 system, ABO blood groups, AB0 blood groups, ABO blood types, AB0 blood types, ABO genetic locus, ABO genes, ABO, AB0, A glycosyltransferases, B glycosyltransferases, glycosyltransferases, A transferase, B transferase, cell surface antigens, carbohydrate antigens, oligosaccharide antigens, oligosaccharides, complex carbohydrate antigens, complex carbohydrates, A antigen, B antigen, H antigen, red blood cell antigens, A/B antigens, ABH antigens, glycolipid, glycosphingolipids, glycoproteins, oligo sugars, red blood cells, RBC, blood transfusion, transfusion medicine, cell/tissue/organ transplantation, transplantation medicine, immunohematology, immunohaematology, immuno-hematology, immunology, ABO genotyping, forensic sciences, legal medicine, human genetics, population genetics, evolution, enzymology, glycobiology, glycosciences, human genes, primate genes, mouse gene, pig genes, alpha 1,3-Gal(NAc) transferases, a1,3-galactosyl transferase, a1,3-GalNAc transferase, structural basis, molecular genetic basis of ABO, ABO polymorphism, single nucleotide polymorphism, SNP, A, B, AB, O, A2, A3, Ax, B3, alleles, weak subgroups, homo sapiens, pig AO genes, cis-AB, B(A), mouse cis-AB gene, ABO genotype, ABO phenotype, DNA methylation, transcription, alternative splicing, Golgi apparatus, transferase chimeras, GBGT1, GGTA1, A3GALT2, monoclonal antibody, sera, plant lectins, Fumi-ichiro Yamamoto, Fumiichiro Yamamoto, F. Yamamoto, Landsteiner, enzyme, kinetics, sugar specificity, acceptor substrate specificity, acceptors, donors, sugars, nucleotide-sugars, genetic engineering, differential susceptibility to infectious diseases, differential cancer susceptibility, alterations in glycosylation in cancer, pancreatic cancer, diets, Peter D'Adamo, Blood type diets, neurobiology, Masahiko Nomi, personality, Burnham Institute, Burnham Institute for Medical Research, Biomembrane Institute, IMPPC, IMPPC Institute of Predictive and Personalized Medicine of Cancer, Institut de Medicina Predictiva i Personalitzada del Càncer,  AABB, ISBT, dbRBC - Blood Group Antigen Gene Mutation Database

Comments