Appendix 19. The genomic structure of the human ABO gene

 

We cloned genomic DNA fragments containing the ABO gene in 1995. The gene spans more than 18 kilobases, and the coding sequence scatters over 7 exons, with the longest coding sequence in the last exon. We determined the exon-intron boundaries, and found that they all follow the GT-AG splicing rule. The 3’ untranslated region is rich with repeat sequences, and may be involved in the stability of the messages. We also delineated the promoter region of the ABO gene. Kominato played the major role in the promoter characterization. To do so, we constructed a luciferase reporter construct with the potential promoter region of the ABO gene that precedes the transcription initiation codon, as well as different sizes of nested deletion. We determined the promoter activity of the constructs and located the region with the promoter activity. The promoter is rich with CG, and there is an enhancer element further upstream.

Appendix 20. Comparison of amino acid sequences of the ABO and related genes

Appendix 01.Discovery of the ABO blood group system 

01. ABO Blood Group System


Keywords

Histo-blood group ABO system, blood group ABO system, ABO system, AB0 system, ABO blood groups, AB0 blood groups, ABO blood types, AB0 blood types, ABO genetic locus, ABO genes, ABO, AB0, A glycosyltransferases, B glycosyltransferases, glycosyltransferases, A transferase, B transferase, cell surface antigens, carbohydrate antigens, oligosaccharide antigens, oligosaccharides, complex carbohydrate antigens, complex carbohydrates, A antigen, B antigen, H antigen, red blood cell antigens, A/B antigens, ABH antigens, glycolipid, glycosphingolipids, glycoproteins, oligo sugars, red blood cells, RBC, blood transfusion, transfusion medicine, cell/tissue/organ transplantation, transplantation medicine, immunohematology, immunohaematology, immuno-hematology, immunology, ABO genotyping, forensic sciences, legal medicine, human genetics, population genetics, evolution, enzymology, glycobiology, glycosciences, human genes, primate genes, mouse gene, pig genes, alpha 1,3-Gal(NAc) transferases, a1,3-galactosyl transferase, a1,3-GalNAc transferase, structural basis, molecular genetic basis of ABO, ABO polymorphism, single nucleotide polymorphism, SNP, A, B, AB, O, A2, A3, Ax, B3, alleles, weak subgroups, homo sapiens, pig AO genes, cis-AB, B(A), mouse cis-AB gene, ABO genotype, ABO phenotype, DNA methylation, transcription, alternative splicing, Golgi apparatus, transferase chimeras, GBGT1, GGTA1, A3GALT2, monoclonal antibody, sera, plant lectins, Fumi-ichiro Yamamoto, Fumiichiro Yamamoto, F. Yamamoto, Landsteiner, enzyme, kinetics, sugar specificity, acceptor substrate specificity, acceptors, donors, sugars, nucleotide-sugars, genetic engineering, differential susceptibility to infectious diseases, differential cancer susceptibility, alterations in glycosylation in cancer, pancreatic cancer, diets, Peter D'Adamo, Blood type diets, neurobiology, Masahiko Nomi, personality, Burnham Institute, Burnham Institute for Medical Research, Biomembrane Institute, IMPPC, IMPPC Institute of Predictive and Personalized Medicine of Cancer, Institut de Medicina Predictiva i Personalitzada del Càncer,  AABB, ISBT, dbRBC - Blood Group Antigen Gene Mutation Database

Comments