29. Nucleotide-Sugar Specificity (A transferase Codons 266-268)

 

The area of the A transferase surrounding codons 266 and 268 is schematically shown. With the original glycine (G) residue at codon 268, only a GalNAc fits well to the cavity space. When it is replaced by the alanine (A) residue, the space becomes a little smaller. As a result, not only a GalNAc but also a galactose are able to fit in this space. The situation is the same for the replacement of the glycine residue with serine (S) or cysteine (C), but when it is replaced by a larger residue, neither a GalNAc nor a galactose fits in the space any longer.

30. Transfection Results (B transferase Codon 268)

01. ABO Blood Group System

Keywords

Histo-blood group ABO system, blood group ABO system, ABO system, AB0 system, ABO blood groups, AB0 blood groups, ABO blood types, AB0 blood types, ABO genetic locus, ABO genes, ABO, AB0, A glycosyltransferases, B glycosyltransferases, glycosyltransferases, A transferase, B transferase, cell surface antigens, carbohydrate antigens, oligosaccharide antigens, oligosaccharides, complex carbohydrate antigens, complex carbohydrates, A antigen, B antigen, H antigen, red blood cell antigens, A/B antigens, ABH antigens, glycolipid, glycosphingolipids, glycoproteins, oligo sugars, red blood cells, RBC, blood transfusion, transfusion medicine, cell/tissue/organ transplantation, transplantation medicine, immunohematology, immunohaematology, immuno-hematology, immunology, ABO genotyping, forensic sciences, legal medicine, human genetics, population genetics, evolution, enzymology, glycobiology, glycosciences, human genes, primate genes, mouse gene, pig genes, alpha 1,3-Gal(NAc) transferases, a1,3-galactosyl transferase, a1,3-GalNAc transferase, structural basis, molecular genetic basis of ABO, ABO polymorphism, single nucleotide polymorphism, SNP, A, B, AB, O, A2, A3, Ax, B3, alleles, weak subgroups, homo sapiens, pig AO genes, cis-AB, B(A), mouse cis-AB gene, ABO genotype, ABO phenotype, DNA methylation, transcription, alternative splicing, Golgi apparatus, transferase chimeras, GBGT1, GGTA1, A3GALT2, monoclonal antibody, sera, plant lectins, Fumi-ichiro Yamamoto, Fumiichiro Yamamoto, F. Yamamoto, Landsteiner, enzyme, kinetics, sugar specificity, acceptor substrate specificity, acceptors, donors, sugars, nucleotide-sugars, genetic engineering, differential susceptibility to infectious diseases, differential cancer susceptibility, alterations in glycosylation in cancer, pancreatic cancer, diets, Peter D'Adamo, Blood type diets, neurobiology, Masahiko Nomi, personality, Burnham Institute, Burnham Institute for Medical Research, Biomembrane Institute, IMPPC, IMPPC Institute of Predictive and Personalized Medicine of Cancer, Institut de Medicina Predictiva i Personalitzada del Càncer,  AABB, ISBT, dbRBC - Blood Group Antigen Gene Mutation Database
Comments